These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
556 related articles for article (PubMed ID: 20542329)
21. Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes. Mei S; Wang H; Wang W; Tong L; Pan H; Ruan C; Ma Q; Liu M; Yang H; Zhang L; Cheng Y; Zhang Y; Zhao L; Chu PK Biomaterials; 2014 May; 35(14):4255-65. PubMed ID: 24565524 [TBL] [Abstract][Full Text] [Related]
22. Nanocomposites of genipin-crosslinked chitosan/silver nanoparticles--structural reinforcement and antimicrobial properties. Liu BS; Huang TB Macromol Biosci; 2008 Oct; 8(10):932-41. PubMed ID: 18615456 [TBL] [Abstract][Full Text] [Related]
23. A novel thermal decomposition approach to synthesize hydroxyapatite-silver nanocomposites and their antibacterial action against GFP-expressing antibiotic resistant E. coli. Sahni G; Gopinath P; Jeevanandam P Colloids Surf B Biointerfaces; 2013 Mar; 103():441-7. PubMed ID: 23261564 [TBL] [Abstract][Full Text] [Related]
24. Huge increase of therapeutic window at a bioactive silver/titania nanocomposite coating surface compared to solution. Hrkac T; Röhl C; Podschun R; Zaporojtchenko V; Strunskus T; Papavlassopoulos H; Garbe-Schönberg D; Faupel F Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2367-75. PubMed ID: 23498271 [TBL] [Abstract][Full Text] [Related]
25. Preparation of TiO(2)/Ag colloids with ultraviolet resistance and antibacterial property using short chain polyethylene glycol. Su W; Wei SS; Hu SQ; Tang JX J Hazard Mater; 2009 Dec; 172(2-3):716-20. PubMed ID: 19674837 [TBL] [Abstract][Full Text] [Related]
26. A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity. Thomas V; Yallapu MM; Sreedhar B; Bajpai SK J Colloid Interface Sci; 2007 Nov; 315(1):389-95. PubMed ID: 17707388 [TBL] [Abstract][Full Text] [Related]
27. Effects of increasing carbon nanofiber density in polyurethane composites for inhibiting bladder cancer cell functions. Tsang M; Chun YW; Im YM; Khang D; Webster TJ Tissue Eng Part A; 2011 Jul; 17(13-14):1879-89. PubMed ID: 21417694 [TBL] [Abstract][Full Text] [Related]
28. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Jain P; Pradeep T Biotechnol Bioeng; 2005 Apr; 90(1):59-63. PubMed ID: 15723325 [TBL] [Abstract][Full Text] [Related]
29. Evenly distributed thin-film Ag coating on stainless plate by tricomponent Ag/silicate/PU with antimicrobial and biocompatible properties. Huang YH; Chen MH; Lee BH; Hsieh KH; Tu YK; Lin JJ; Chang CH ACS Appl Mater Interfaces; 2014 Nov; 6(22):20324-33. PubMed ID: 25307230 [TBL] [Abstract][Full Text] [Related]
30. Nanocharacterization and bactericidal performance of silver modified titania photocatalyst. Pan X; Medina-Ramirez I; Mernaugh R; Liu J Colloids Surf B Biointerfaces; 2010 May; 77(1):82-9. PubMed ID: 20153152 [TBL] [Abstract][Full Text] [Related]
32. In vitro and in vivo characterization of antibacterial activity and biocompatibility: a study on silver-containing phosphonate monolayers on titanium. Tîlmaciu CM; Mathieu M; Lavigne JP; Toupet K; Guerrero G; Ponche A; Amalric J; Noël D; Mutin PH Acta Biomater; 2015 Mar; 15():266-77. PubMed ID: 25562573 [TBL] [Abstract][Full Text] [Related]
33. Antibacterial efficacy of silver nanoparticles of different sizes, surface conditions and synthesis methods. Samberg ME; Orndorff PE; Monteiro-Riviere NA Nanotoxicology; 2011 Jun; 5(2):244-53. PubMed ID: 21034371 [TBL] [Abstract][Full Text] [Related]
34. Antibiofilm properties of silver and gold incorporated PU, PCLm, PC and PMMA nanocomposites under two shear conditions. Sawant SN; Selvaraj V; Prabhawathi V; Doble M PLoS One; 2013; 8(5):e63311. PubMed ID: 23675476 [TBL] [Abstract][Full Text] [Related]
35. Investigation of Ag/a-C:H Nanocomposite Coatings on Titanium for Orthopedic Applications. Thukkaram M; Vaidulych M; Kylián O; Hanuš J; Rigole P; Aliakbarshirazi S; Asadian M; Nikiforov A; Van Tongel A; Biederman H; Coenye T; Du Laing G; Morent R; De Wilde L; Verbeken K; De Geyter N ACS Appl Mater Interfaces; 2020 May; 12(21):23655-23666. PubMed ID: 32374146 [TBL] [Abstract][Full Text] [Related]
36. Ag/Al(OH)3 mesoporous nanocomposite film as antibacterial agent. Seo YI; Hong KH; Kim DG; Kim YD Colloids Surf B Biointerfaces; 2010 Nov; 81(1):369-73. PubMed ID: 20675105 [TBL] [Abstract][Full Text] [Related]
37. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Lok CN; Ho CM; Chen R; He QY; Yu WY; Sun H; Tam PK; Chiu JF; Che CM J Proteome Res; 2006 Apr; 5(4):916-24. PubMed ID: 16602699 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of the antibacterial activity and biocompatibility for silver nanoparticles immobilized on nano silicate platelets. Lin JJ; Lin WC; Li SD; Lin CY; Hsu SH ACS Appl Mater Interfaces; 2013 Jan; 5(2):433-43. PubMed ID: 23270500 [TBL] [Abstract][Full Text] [Related]
39. Silver nanocrystallites: biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria. Suresh AK; Pelletier DA; Wang W; Moon JW; Gu B; Mortensen NP; Allison DP; Joy DC; Phelps TJ; Doktycz MJ Environ Sci Technol; 2010 Jul; 44(13):5210-5. PubMed ID: 20509652 [TBL] [Abstract][Full Text] [Related]
40. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Sathishkumar M; Sneha K; Won SW; Cho CW; Kim S; Yun YS Colloids Surf B Biointerfaces; 2009 Oct; 73(2):332-8. PubMed ID: 19576733 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]