These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 20542515)
1. Probing the kinetic performance limits for ion chromatography. II. Gradient conditions for small ions. Causon TJ; Hilder EF; Shellie RA; Haddad PR J Chromatogr A; 2010 Jul; 1217(31):5063-8. PubMed ID: 20542515 [TBL] [Abstract][Full Text] [Related]
2. Probing the kinetic performance limits for ion chromatography. I. Isocratic conditions for small ions. Causon TJ; Hilder EF; Shellie RA; Haddad PR J Chromatogr A; 2010 Jul; 1217(31):5057-62. PubMed ID: 20580370 [TBL] [Abstract][Full Text] [Related]
3. Fast ion chromatography using short anion exchange columns. Tyrrell E; Shellie RA; Hilder EF; Pohl CA; Haddad PR J Chromatogr A; 2009 Nov; 1216(48):8512-7. PubMed ID: 19846103 [TBL] [Abstract][Full Text] [Related]
4. Packing procedures for high efficiency, short ion-exchange columns for rapid separation of inorganic anions. Tyrrell E; Hilder EF; Shalliker RA; Dicinoski GW; Shellie RA; Breadmore MC; Pohl CA; Haddad PR J Chromatogr A; 2008 Oct; 1208(1-2):95-100. PubMed ID: 18786674 [TBL] [Abstract][Full Text] [Related]
5. Separation of small inorganic anions using methacrylate-based anion-exchange monolithic column prepared by low temperature UV photo-polymerization. Takahashi M; Hirano T; Kitagawa S; Ohtani H J Chromatogr A; 2012 Apr; 1232():123-7. PubMed ID: 22098934 [TBL] [Abstract][Full Text] [Related]
6. Application of retention modelling to the simulation of separation of organic anions in suppressed ion chromatography. Zakaria P; Dicinoski GW; Ng BK; Shellie RA; Hanna-Brown M; Haddad PR J Chromatogr A; 2009 Sep; 1216(38):6600-10. PubMed ID: 19683244 [TBL] [Abstract][Full Text] [Related]
7. Using contemporary liquid chromatography theory and technology to improve capillary gradient ion-exchange separations. Wouters B; Broeckhoven K; Wouters S; Bruggink C; Agroskin Y; Pohl CA; Eeltink S J Chromatogr A; 2014 Nov; 1370():63-9. PubMed ID: 25454130 [TBL] [Abstract][Full Text] [Related]
8. A graphical method for understanding the kinetics of peak capacity production in gradient elution liquid chromatography. Wang X; Stoll DR; Carr PW; Schoenmakers PJ J Chromatogr A; 2006 Sep; 1125(2):177-81. PubMed ID: 16777118 [TBL] [Abstract][Full Text] [Related]
9. Prediction of the effects of methanol and competing ion concentration on retention in the ion chromatographic separation of anionic and cationic pharmaceutically related compounds. Zakaria P; Dicinoski G; Hanna-Brown M; Haddad PR J Chromatogr A; 2010 Sep; 1217(39):6069-76. PubMed ID: 20732686 [TBL] [Abstract][Full Text] [Related]
10. Utilization of a diol-stationary phase column in ion chromatographic separation of inorganic anions. Arai K; Mori M; Kozaki D; Nakatani N; Itabashi H; Tanaka K J Chromatogr A; 2012 Dec; 1270():147-52. PubMed ID: 23182277 [TBL] [Abstract][Full Text] [Related]
11. Methodology for porting retention prediction data from old to new columns and from conventional-scale to miniaturised ion chromatography systems. Ng BK; Shellie RA; Dicinoski GW; Bloomfield C; Liu Y; Pohl CA; Haddad PR J Chromatogr A; 2011 Aug; 1218(32):5512-9. PubMed ID: 21741652 [TBL] [Abstract][Full Text] [Related]
12. Capillary ion chromatography at high pressure and temperature. Wouters B; Bruggink C; Desmet G; Agroskin Y; Pohl CA; Eeltink S Anal Chem; 2012 Aug; 84(16):7212-7. PubMed ID: 22830640 [TBL] [Abstract][Full Text] [Related]
13. Comparison of nonporous silica-based ion exchangers and monolithic ion exchangers in separations of inorganic anions. Kanatyeva AY; Viktorova EN; Korolev AA; Kurganov AA J Sep Sci; 2007 Nov; 30(17):2836-42. PubMed ID: 18027891 [TBL] [Abstract][Full Text] [Related]
14. A general strategy for performing temperature-programming in high performance liquid chromatography--prediction of segmented temperature gradients. Wiese S; Teutenberg T; Schmidt TC J Chromatogr A; 2011 Sep; 1218(39):6898-906. PubMed ID: 21872258 [TBL] [Abstract][Full Text] [Related]
15. Arsenic speciation by gradient anion exchange narrow bore ion chromatography and high resolution inductively coupled plasma mass spectrometry detection. Ammann AA J Chromatogr A; 2010 Apr; 1217(14):2111-6. PubMed ID: 20188376 [TBL] [Abstract][Full Text] [Related]
16. Retention controlling and peak shape simulation in anion chromatography using multiple equilibrium model and stochastic theory. Horváth K; Olajos M; Felinger A; Hajós P J Chromatogr A; 2008 May; 1189(1-2):42-51. PubMed ID: 17719052 [TBL] [Abstract][Full Text] [Related]
17. Double gradient ion chromatography using short monolithic columns modified with a long chained zwitterionic carboxybetaine surfactant. Ríordáin CO; Barron L; Nesterenko E; Nesterenko PN; Paull B J Chromatogr A; 2006 Mar; 1109(1):111-9. PubMed ID: 16426628 [TBL] [Abstract][Full Text] [Related]
18. Prediction of analyte retention for ion chromatography separations performed using elution profiles comprising multiple isocratic and gradient steps. Shellie RA; Ng BK; Dicinoski GW; Poynter SD; O'Reilly JW; Pohl CA; Haddad PR Anal Chem; 2008 Apr; 80(7):2474-82. PubMed ID: 18327920 [TBL] [Abstract][Full Text] [Related]
19. Two-dimensional ion chromatography using tandem ion-exchange columns with gradient-pulse column switching. Johns C; Shellie RA; Pohl CA; Haddad PR J Chromatogr A; 2009 Oct; 1216(41):6931-7. PubMed ID: 19732899 [TBL] [Abstract][Full Text] [Related]
20. Single-run ion chromatographic separation of inorganic and low-molecular-mass organic anions under isocratic elution: application to environmental samples. Krata A; Kontozova-Deutsch V; Bencs L; Deutsch F; Van Grieken R Talanta; 2009 Jun; 79(1):16-21. PubMed ID: 19376337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]