BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 20542635)

  • 1. Photocatalytic degradation of 1-naphthol by oxide ceramics with added bacterial disinfection.
    Karunakaran C; Narayanan S; Gomathisankar P
    J Hazard Mater; 2010 Sep; 181(1-3):708-15. PubMed ID: 20542635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photocatalytic removal of Escherichia coli from aquatic solutions using synthesized ZnO nanoparticles: a kinetic study.
    Alikhani MY; Lee SM; Yang JK; Shirzad-Siboni M; Peeri-Dogaheh H; Khorasani MS; Nooshak MA; Samarghandi MR
    Water Sci Technol; 2013; 67(3):557-63. PubMed ID: 23202560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photocatalytic degradation and drug activity reduction of Chloramphenicol.
    Chatzitakis A; Berberidou C; Paspaltsis I; Kyriakou G; Sklaviadis T; Poulios I
    Water Res; 2008 Jan; 42(1-2):386-94. PubMed ID: 17692887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria.
    Liou JW; Chang HH
    Arch Immunol Ther Exp (Warsz); 2012 Aug; 60(4):267-75. PubMed ID: 22678625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocatalytic degradation of dodecyl-benzenesulfonate over TiO2-Cu2O under visible irradiation.
    Han C; Li Z; Shen J
    J Hazard Mater; 2009 Aug; 168(1):215-9. PubMed ID: 19342164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light.
    Kühn KP; Chaberny IF; Massholder K; Stickler M; Benz VW; Sonntag HG; Erdinger L
    Chemosphere; 2003 Oct; 53(1):71-7. PubMed ID: 12892668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption and photocatalytic decolorization of a synthetic dye erythrosine on anatase TiO2 and ZnO surfaces.
    Hasnat MA; Uddin MM; Samed AJ; Alam SS; Hossain S
    J Hazard Mater; 2007 Aug; 147(1-2):471-7. PubMed ID: 17316984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay.
    Pan X; Redding JE; Wiley PA; Wen L; McConnell JS; Zhang B
    Chemosphere; 2010 Mar; 79(1):113-6. PubMed ID: 20106502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photocatalytic degradation of carbofuran using semiconductor oxides.
    Mahalakshmi M; Arabindoo B; Palanichamy M; Murugesan V
    J Hazard Mater; 2007 May; 143(1-2):240-5. PubMed ID: 17045739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced phenol-photodegradation by particulate semiconductor mixtures: interparticle electron-jump.
    Karunakaran C; Dhanalakshmi R; Gomathisankar P; Manikandan G
    J Hazard Mater; 2010 Apr; 176(1-3):799-806. PubMed ID: 20022165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibacterial and photocatalytic activity of TiO2 and ZnO nanomaterials in phosphate buffer and saline solution.
    Ng AM; Chan CM; Guo MY; Leung YH; Djurišić AB; Hu X; Chan WK; Leung FC; Tong SY
    Appl Microbiol Biotechnol; 2013 Jun; 97(12):5565-73. PubMed ID: 23661082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lack of enhanced photocatalytic formation of iodine on particulate semiconductor mixtures.
    Karunakaran C; Anilkumar P; Vinayagamoorthy P
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Dec; 98():460-5. PubMed ID: 22995472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneous photocatalytic degradation of gallic acid under different experimental conditions.
    Quici N; Litter MI
    Photochem Photobiol Sci; 2009 Jul; 8(7):975-84. PubMed ID: 19582273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic study on the photocatalytic degradation of salicylic acid using ZnO catalyst.
    Rao AN; Sivasankar B; Sadasivam V
    J Hazard Mater; 2009 Jul; 166(2-3):1357-61. PubMed ID: 19150585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous photocatalytic oxidation of cyprodinil and fludioxonil in leaching water under solar irradiation.
    Fenoll J; Ruiz E; Hellín P; Flores P; Navarro S
    Chemosphere; 2011 Nov; 85(8):1262-8. PubMed ID: 21840030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective photocatalytic disinfection of E. coli K-12 using AgBr-Ag-Bi2WO6 nanojunction system irradiated by visible light: the role of diffusing hydroxyl radicals.
    Zhang LS; Wong KH; Yip HY; Hu C; Yu JC; Chan CY; Wong PK
    Environ Sci Technol; 2010 Feb; 44(4):1392-8. PubMed ID: 20085257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molybdenum doped titanium dioxide photocatalytic coatings for use as hygienic surfaces: the effect of soiling on antimicrobial activity.
    Fisher L; Ostovapour S; Kelly P; Whitehead KA; Cooke K; Storgårds E; Verran J
    Biofouling; 2014 Sep; 30(8):911-9. PubMed ID: 25184432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocatalytic degradation of eight pesticides in leaching water by use of ZnO under natural sunlight.
    Navarro S; Fenoll J; Vela N; Ruiz E; Navarro G
    J Hazard Mater; 2009 Dec; 172(2-3):1303-10. PubMed ID: 19729242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bactericidal mechanisms of Ag₂O/TNBs under both dark and light conditions.
    Jin Y; Dai Z; Liu F; Kim H; Tong M; Hou Y
    Water Res; 2013 Apr; 47(5):1837-47. PubMed ID: 23360730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocatalytic degradation of gaseous benzene over TiO2/Sr2CeO4: kinetic model and degradation mechanisms.
    Zhong J; Wang J; Tao L; Gong M; Zhimin L; Chen Y
    J Hazard Mater; 2007 Jan; 139(2):323-31. PubMed ID: 16876945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.