These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 20542673)
1. A segmentation framework for abdominal organs from CT scans. Campadelli P; Casiraghi E; Pratissoli S Artif Intell Med; 2010 Sep; 50(1):3-11. PubMed ID: 20542673 [TBL] [Abstract][Full Text] [Related]
2. Automatic localization of solid organs on 3D CT images by a collaborative majority voting decision based on ensemble learning. Zhou X; Wang S; Chen H; Hara T; Yokoyama R; Kanematsu M; Fujita H Comput Med Imaging Graph; 2012 Jun; 36(4):304-13. PubMed ID: 22421130 [TBL] [Abstract][Full Text] [Related]
3. Automated segmentation and quantification of liver and spleen from CT images using normalized probabilistic atlases and enhancement estimation. Linguraru MG; Sandberg JK; Li Z; Shah F; Summers RM Med Phys; 2010 Feb; 37(2):771-83. PubMed ID: 20229887 [TBL] [Abstract][Full Text] [Related]
4. Automated abdominal multi-organ segmentation with subject-specific atlas generation. Wolz R; Chu C; Misawa K; Fujiwara M; Mori K; Rueckert D IEEE Trans Med Imaging; 2013 Sep; 32(9):1723-30. PubMed ID: 23744670 [TBL] [Abstract][Full Text] [Related]
5. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets. Hu P; Wu F; Peng J; Bao Y; Chen F; Kong D Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):399-411. PubMed ID: 27885540 [TBL] [Abstract][Full Text] [Related]
6. Segmentation of liver and spleen based on computational anatomy models. Dong C; Chen YW; Foruzan AH; Lin L; Han XH; Tateyama T; Wu X; Xu G; Jiang H Comput Biol Med; 2015 Dec; 67():146-60. PubMed ID: 26551453 [TBL] [Abstract][Full Text] [Related]
7. Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs. Saito A; Nawano S; Shimizu A Med Image Anal; 2016 Feb; 28():46-65. PubMed ID: 26716720 [TBL] [Abstract][Full Text] [Related]
8. Blood vessel-based liver segmentation using the portal phase of an abdominal CT dataset. Maklad AS; Matsuhiro M; Suzuki H; Kawata Y; Niki N; Satake M; Moriyama N; Utsunomiya T; Shimada M Med Phys; 2013 Nov; 40(11):113501. PubMed ID: 24320472 [TBL] [Abstract][Full Text] [Related]
9. Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors. Okada T; Linguraru MG; Hori M; Summers RM; Tomiyama N; Sato Y Med Image Anal; 2015 Dec; 26(1):1-18. PubMed ID: 26277022 [TBL] [Abstract][Full Text] [Related]
10. Abdominal multi-organ CT segmentation using organ correlation graph and prediction-based shape and location priors. Okada T; Linguraru MG; Hori M; Summers RM; Tomiyama N; Sato Y Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):275-82. PubMed ID: 24505771 [TBL] [Abstract][Full Text] [Related]
11. Medical image analysis of 3D CT images based on extension of Haralick texture features. Tesar L; Shimizu A; Smutek D; Kobatake H; Nawano S Comput Med Imaging Graph; 2008 Sep; 32(6):513-20. PubMed ID: 18614335 [TBL] [Abstract][Full Text] [Related]
12. Multi-organ segmentation based on spatially-divided probabilistic atlas from 3D abdominal CT images. Chu C; Oda M; Kitasaka T; Misawa K; Fujiwara M; Hayashi Y; Nimura Y; Rueckert D; Mori K Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):165-72. PubMed ID: 24579137 [TBL] [Abstract][Full Text] [Related]
13. 3D Kidney Segmentation from Abdominal Images Using Spatial-Appearance Models. Khalifa F; Soliman A; Elmaghraby A; Gimel'farb G; El-Baz A Comput Math Methods Med; 2017; 2017():9818506. PubMed ID: 28280519 [TBL] [Abstract][Full Text] [Related]
14. Discriminative dictionary learning for abdominal multi-organ segmentation. Tong T; Wolz R; Wang Z; Gao Q; Misawa K; Fujiwara M; Mori K; Hajnal JV; Rueckert D Med Image Anal; 2015 Jul; 23(1):92-104. PubMed ID: 25988490 [TBL] [Abstract][Full Text] [Related]
15. Liver segmentation from computed tomography scans: a survey and a new algorithm. Campadelli P; Casiraghi E; Esposito A Artif Intell Med; 2009; 45(2-3):185-96. PubMed ID: 19059767 [TBL] [Abstract][Full Text] [Related]
16. Granular computing in model based abdominal organs detection. Juszczyk J; Pietka E; PyciĆski B Comput Med Imaging Graph; 2015 Dec; 46 Pt 2():121-30. PubMed ID: 25804441 [TBL] [Abstract][Full Text] [Related]
17. Computer-aided kidney segmentation on abdominal CT images. Lin DT; Lei CC; Hung SW IEEE Trans Inf Technol Biomed; 2006 Jan; 10(1):59-65. PubMed ID: 16445250 [TBL] [Abstract][Full Text] [Related]
18. Shape-intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images. Wang J; Cheng Y; Guo C; Wang Y; Tamura S Int J Comput Assist Radiol Surg; 2016 May; 11(5):817-26. PubMed ID: 26646416 [TBL] [Abstract][Full Text] [Related]
19. Multi-organ abdominal CT segmentation using hierarchically weighted subject-specific atlases. Wolz R; Chu C; Misawa K; Mori K; Rueckert D Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):10-7. PubMed ID: 23285529 [TBL] [Abstract][Full Text] [Related]
20. Construction of hierarchical multi-organ statistical atlases and their application to multi-organ segmentation from CT images. Okada T; Yokota K; Hori M; Nakamoto M; Nakamura H; Sato Y Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):502-9. PubMed ID: 18979784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]