BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 20542759)

  • 1. Assessment of pulmonary flow using impedance pneumography.
    Seppä VP; Viik J; Hyttinen J
    IEEE Trans Biomed Eng; 2010 Sep; 57(9):2277-85. PubMed ID: 20542759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A robust electrode configuration for bioimpedance measurement of respiration.
    Wang HB; Yen CW; Liang JT; Wang Q; Liu GZ; Song R
    J Healthc Eng; 2014; 5(3):313-27. PubMed ID: 25193370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for suppressing cardiogenic oscillations in impedance pneumography.
    Seppä VP; Hyttinen J; Viik J
    Physiol Meas; 2011 Mar; 32(3):337-45. PubMed ID: 21321385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tidal breathing flow measurement in awake young children by using impedance pneumography.
    Seppä VP; Pelkonen AS; Kotaniemi-Syrjänen A; Mäkelä MJ; Viik J; Malmberg LP
    J Appl Physiol (1985); 2013 Dec; 115(11):1725-31. PubMed ID: 24092693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of the thoracic impedance derived respiratory signal using multilevel analysis.
    Houtveen JH; Groot PF; de Geus EJ
    Int J Psychophysiol; 2006 Feb; 59(2):97-106. PubMed ID: 15893397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel electrode configuration for highly linear impedance pneumography.
    Seppä VP; Hyttinen J; Uitto M; Chrapek W; Viik J
    Biomed Tech (Berl); 2013 Feb; 58(1):35-8. PubMed ID: 23348215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of tidal breathing flows in infants using impedance pneumography.
    Malmberg LP; Seppä VP; Kotaniemi-Syrjänen A; Malmström K; Kajosaari M; Pelkonen AS; Viik J; Mäkelä MJ
    Eur Respir J; 2017 Feb; 49(2):. PubMed ID: 28182566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tidal breathing flow-volume curves with impedance pneumography during expiratory loading.
    Seppä VP; Uitto M; Viik J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2437-40. PubMed ID: 24110219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reliability of respiratory tidal volume estimation by means of ambulatory inductive plethysmography.
    Grossman P; Spoerle M; Wilhelm FH
    Biomed Sci Instrum; 2006; 42():193-8. PubMed ID: 16817607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of impedance and inductance ventilation sensors on adults during breathing, motion, and simulated airway obstruction.
    Cohen KP; Ladd WM; Beams DM; Sheers WS; Radwin RG; Tompkins WJ; Webster JG
    IEEE Trans Biomed Eng; 1997 Jul; 44(7):555-66. PubMed ID: 9210815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of calibration methods on impedance pneumography accuracy.
    Młyńczak M; Niewiadomski W; Żyliński M; Cybulski G
    Biomed Tech (Berl); 2016 Dec; 61(6):587-593. PubMed ID: 26684348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A parametric model of the relationship between EIT and total lung volume.
    Coulombe N; Gagnon H; Marquis F; Skrobik Y; Guardo R
    Physiol Meas; 2005 Aug; 26(4):401-11. PubMed ID: 15886435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tidal breathing flow volume profiles during sleep in wheezing infants measured by impedance pneumography.
    Gracia-Tabuenca J; Seppä VP; Jauhiainen M; Kotaniemi-Syrjänen A; Malmström K; Pelkonen A; Mäkelä M; Viik J; Malmberg LP
    J Appl Physiol (1985); 2019 May; 126(5):1409-1418. PubMed ID: 30763165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy of ventilatory measurement employing ambulatory inductive plethysmography during tasks of everyday life.
    Grossman P; Wilhelm FH; Brutsche M
    Biol Psychol; 2010 Apr; 84(1):121-8. PubMed ID: 20176075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards Estimation of Tidal Volume and Respiratory Timings via Wearable-Patch-Based Impedance Pneumography in Ambulatory Settings.
    Berkebile JA; Mabrouk SA; Ganti VG; Srivatsa AV; Sanchez-Perez JA; Inan OT
    IEEE Trans Biomed Eng; 2022 Jun; 69(6):1909-1919. PubMed ID: 34818186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An inexpensive, MRI compatible device to measure tidal volume from chest-wall circumference.
    Binks AP; Banzett RB; Duvivier C
    Physiol Meas; 2007 Feb; 28(2):149-59. PubMed ID: 17237587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tidal volume measurements in newborns using respiratory inductive plethysmography.
    Adams JA; Zabaleta IA; Stroh D; Johnson P; Sackner MA
    Am Rev Respir Dis; 1993 Sep; 148(3):585-88. PubMed ID: 8368627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of breath amplitudes: comparison of three noninvasive respiratory monitors to integrated pneumotachograph.
    Adams JA; Zabaleta IA; Stroh D; Sackner MA
    Pediatr Pulmonol; 1993 Oct; 16(4):254-8. PubMed ID: 8265274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurements of ventilation in freely ranging subjects.
    McCool FD; Paek D
    Res Rep Health Eff Inst; 1993 May; (59):1-17; discussion 57-69. PubMed ID: 8216969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous monitoring of cardiac output from TCG signals.
    Keenan DB
    Biomed Sci Instrum; 2004; 40():343-9. PubMed ID: 15133982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.