BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 20542877)

  • 1. Metabolic disorders in heart diseases with an inflammatory background.
    Boucher FR
    Cardiovasc Res; 2010 Aug; 87(3):403-5. PubMed ID: 20542877
    [No Abstract]   [Full Text] [Related]  

  • 2. The p65 subunit of NF-kappaB binds to PGC-1alpha, linking inflammation and metabolic disturbances in cardiac cells.
    Alvarez-Guardia D; Palomer X; Coll T; Davidson MM; Chan TO; Feldman AM; Laguna JC; Vázquez-Carrera M
    Cardiovasc Res; 2010 Aug; 87(3):449-58. PubMed ID: 20211864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TNF-alpha reduces PGC-1alpha expression through NF-kappaB and p38 MAPK leading to increased glucose oxidation in a human cardiac cell model.
    Palomer X; Alvarez-Guardia D; Rodríguez-Calvo R; Coll T; Laguna JC; Davidson MM; Chan TO; Feldman AM; Vázquez-Carrera M
    Cardiovasc Res; 2009 Mar; 81(4):703-12. PubMed ID: 19038972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease.
    Finck BN; Kelly DP
    Circulation; 2007 May; 115(19):2540-8. PubMed ID: 17502589
    [No Abstract]   [Full Text] [Related]  

  • 5. PGC-1 coactivators in cardiac development and disease.
    Rowe GC; Jiang A; Arany Z
    Circ Res; 2010 Oct; 107(7):825-38. PubMed ID: 20884884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial energy metabolism in heart failure: a question of balance.
    Huss JM; Kelly DP
    J Clin Invest; 2005 Mar; 115(3):547-55. PubMed ID: 15765136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic and genetic regulation of cardiac energy substrate preference.
    Kodde IF; van der Stok J; Smolenski RT; de Jong JW
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Jan; 146(1):26-39. PubMed ID: 17081788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The PPAR regulatory system in cardiac physiology and disease.
    Finck BN
    Cardiovasc Res; 2007 Jan; 73(2):269-77. PubMed ID: 17010956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PGC-1alpha, a new therapeutic target in Huntington's disease?
    McGill JK; Beal MF
    Cell; 2006 Nov; 127(3):465-8. PubMed ID: 17081970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CAT in the HAT: catabolic inhibition by the histone acetyltransferase GCN5.
    Liu Y; Montminy M
    Cell Metab; 2006 Jun; 3(6):387-8. PubMed ID: 16753572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estrogen-related receptor alpha directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle.
    Huss JM; Torra IP; Staels B; Giguère V; Kelly DP
    Mol Cell Biol; 2004 Oct; 24(20):9079-91. PubMed ID: 15456881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear receptor signaling and cardiac energetics.
    Huss JM; Kelly DP
    Circ Res; 2004 Sep; 95(6):568-78. PubMed ID: 15375023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of heart failure by minimally invasive aortic constriction in mice: reduced peroxisome proliferator-activated receptor γ coactivator levels and mitochondrial dysfunction.
    Faerber G; Barreto-Perreia F; Schoepe M; Gilsbach R; Schrepper A; Schwarzer M; Mohr FW; Hein L; Doenst T
    J Thorac Cardiovasc Surg; 2011 Feb; 141(2):492-500, 500.e1. PubMed ID: 20447656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The PGC1alpha-PPARdelta-HO-1 system: supporting evidence from studies in Bartter's/Gitelman's syndromes.
    Calò LA; Davis PA
    Cardiovasc Res; 2010 Jun; 86(3):535. PubMed ID: 20228397
    [No Abstract]   [Full Text] [Related]  

  • 15. An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy.
    Palomer X; Salvadó L; Barroso E; Vázquez-Carrera M
    Int J Cardiol; 2013 Oct; 168(4):3160-72. PubMed ID: 23932046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PGC-1alpha: a key regulator of energy metabolism.
    Liang H; Ward WF
    Adv Physiol Educ; 2006 Dec; 30(4):145-51. PubMed ID: 17108241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PGC-1alpha coactivates PDK4 gene expression via the orphan nuclear receptor ERRalpha: a mechanism for transcriptional control of muscle glucose metabolism.
    Wende AR; Huss JM; Schaeffer PJ; Giguère V; Kelly DP
    Mol Cell Biol; 2005 Dec; 25(24):10684-94. PubMed ID: 16314495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation.
    Vats D; Mukundan L; Odegaard JI; Zhang L; Smith KL; Morel CR; Wagner RA; Greaves DR; Murray PJ; Chawla A
    Cell Metab; 2006 Jul; 4(1):13-24. PubMed ID: 16814729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex.
    Cunningham JT; Rodgers JT; Arlow DH; Vazquez F; Mootha VK; Puigserver P
    Nature; 2007 Nov; 450(7170):736-40. PubMed ID: 18046414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of plasma free fatty acids upregulates peroxisome proliferator-activated receptor (PPAR) alpha and delta and PPAR coactivator 1alpha in human skeletal muscle, but not lipid regulatory genes.
    Watt MJ; Southgate RJ; Holmes AG; Febbraio MA
    J Mol Endocrinol; 2004 Oct; 33(2):533-44. PubMed ID: 15525607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.