These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 20542918)

  • 1. Knocking down gene function with an RNA aptamer expressed as part of an intron.
    Wang S; Zhao X; Suran R; Vogt VM; Lis JT; Shi H
    Nucleic Acids Res; 2010 Aug; 38(15):e154. PubMed ID: 20542918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibiting heat shock factor 1 in human cancer cells with a potent RNA aptamer.
    Salamanca HH; Antonyak MA; Cerione RA; Shi H; Lis JT
    PLoS One; 2014; 9(5):e96330. PubMed ID: 24800749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An RNA aptamer perturbs heat shock transcription factor activity in Drosophila melanogaster.
    Salamanca HH; Fuda N; Shi H; Lis JT
    Nucleic Acids Res; 2011 Aug; 39(15):6729-40. PubMed ID: 21576228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systematic study of the features critical for designing a high avidity multivalent aptamer.
    Zhao X; Lis JT; Shi H
    Nucleic Acid Ther; 2013 Jun; 23(3):238-42. PubMed ID: 23550551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An RNA aptamer that interferes with the DNA binding of the HSF transcription activator.
    Zhao X; Shi H; Sevilimedu A; Liachko N; Nelson HC; Lis JT
    Nucleic Acids Res; 2006; 34(13):3755-61. PubMed ID: 16893958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An RNA-based transcription activator derived from an inhibitory aptamer.
    Wang S; Shepard JR; Shi H
    Nucleic Acids Res; 2010 Apr; 38(7):2378-86. PubMed ID: 20071370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defining the Essential Function of Yeast Hsf1 Reveals a Compact Transcriptional Program for Maintaining Eukaryotic Proteostasis.
    Solís EJ; Pandey JP; Zheng X; Jin DX; Gupta PB; Airoldi EM; Pincus D; Denic V
    Mol Cell; 2016 Jul; 63(1):60-71. PubMed ID: 27320198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saccharomyces cerevisiae heat shock transcription factor regulates cell wall remodeling in response to heat shock.
    Imazu H; Sakurai H
    Eukaryot Cell; 2005 Jun; 4(6):1050-6. PubMed ID: 15947197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous nuclear ribonucleoprotein K inhibits heat shock-induced transcriptional activity of heat shock factor 1.
    Kim HJ; Lee JJ; Cho JH; Jeong J; Park AY; Kang W; Lee KJ
    J Biol Chem; 2017 Aug; 292(31):12801-12812. PubMed ID: 28592492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between heat shock transcription factors (HSFs) and divergent binding sequences: binding specificities of yeast HSFs and human HSF1.
    Sakurai H; Takemori Y
    J Biol Chem; 2007 May; 282(18):13334-41. PubMed ID: 17347150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of human heat shock factor trimerization by the linker domain.
    Liu PC; Thiele DJ
    J Biol Chem; 1999 Jun; 274(24):17219-25. PubMed ID: 10358080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat shock instructs hESCs to exit from the self-renewal program through negative regulation of OCT4 by SAPK/JNK and HSF1 pathway.
    Byun K; Kim TK; Oh J; Bayarsaikhan E; Kim D; Lee MY; Pack CG; Hwang D; Lee B
    Stem Cell Res; 2013 Nov; 11(3):1323-34. PubMed ID: 24090933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the Hsf1-dependent transcriptome via conserved bipartite contacts with Hsp70 promotes survival in yeast.
    Peffer S; Gonçalves D; Morano KA
    J Biol Chem; 2019 Aug; 294(32):12191-12202. PubMed ID: 31239354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transportable, Chemical Genetic Methodology for the Small Molecule-Mediated Inhibition of Heat Shock Factor 1.
    Moore CL; Dewal MB; Nekongo EE; Santiago S; Lu NB; Levine SS; Shoulders MD
    ACS Chem Biol; 2016 Jan; 11(1):200-10. PubMed ID: 26502114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae.
    Yamamoto A; Mizukami Y; Sakurai H
    J Biol Chem; 2005 Mar; 280(12):11911-9. PubMed ID: 15647283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-up and FRET aptamer reporters; evaluating their applications for imaging transcription in eukaryotic cells.
    Ilgu M; Ray J; Bendickson L; Wang T; Geraskin IM; Kraus GA; Nilsen-Hamilton M
    Methods; 2016 Apr; 98():26-33. PubMed ID: 26707205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A DNA sequence directed mutual transcription regulation of HSF1 and NFIX involves novel heat sensitive protein interactions.
    Singh U; Bongcam-Rudloff E; Westermark B
    PLoS One; 2009; 4(4):e5050. PubMed ID: 19337383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of thermotolerance by stress-induced transcription factors in Saccharomyces cerevisiae.
    Yamamoto N; Maeda Y; Ikeda A; Sakurai H
    Eukaryot Cell; 2008 May; 7(5):783-90. PubMed ID: 18359875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress.
    Raitt DC; Johnson AL; Erkine AM; Makino K; Morgan B; Gross DS; Johnston LH
    Mol Biol Cell; 2000 Jul; 11(7):2335-47. PubMed ID: 10888672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered 5S ribosomal RNAs displaying aptamers recognizing vascular endothelial growth factor and malachite green.
    Zhang X; Potty AS; Jackson GW; Stepanov V; Tang A; Liu Y; Kourentzi K; Strych U; Fox GE; Willson RC
    J Mol Recognit; 2009; 22(2):154-61. PubMed ID: 19195013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.