These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 20543069)
1. The importance of the small RNA chaperone Hfq for growth of epidemic Yersinia pestis, but not Yersinia pseudotuberculosis, with implications for plague biology. Bai G; Golubov A; Smith EA; McDonough KA J Bacteriol; 2010 Aug; 192(16):4239-45. PubMed ID: 20543069 [TBL] [Abstract][Full Text] [Related]
2. Identification and characterization of small RNAs in Yersinia pestis. Beauregard A; Smith EA; Petrone BL; Singh N; Karch C; McDonough KA; Wade JT RNA Biol; 2013 Mar; 10(3):397-405. PubMed ID: 23324607 [TBL] [Abstract][Full Text] [Related]
3. Global discovery of small RNAs in Yersinia pseudotuberculosis identifies Yersinia-specific small, noncoding RNAs required for virulence. Koo JT; Alleyne TM; Schiano CA; Jafari N; Lathem WW Proc Natl Acad Sci U S A; 2011 Sep; 108(37):E709-17. PubMed ID: 21876162 [TBL] [Abstract][Full Text] [Related]
4. Hfq-dependent, co-ordinate control of cyclic diguanylate synthesis and catabolism in the plague pathogen Yersinia pestis. Bellows LE; Koestler BJ; Karaba SM; Waters CM; Lathem WW Mol Microbiol; 2012 Nov; 86(3):661-74. PubMed ID: 22924957 [TBL] [Abstract][Full Text] [Related]
5. Determination of sRNA expressions by RNA-seq in Yersinia pestis grown in vitro and during infection. Yan Y; Su S; Meng X; Ji X; Qu Y; Liu Z; Wang X; Cui Y; Deng Z; Zhou D; Jiang W; Yang R; Han Y PLoS One; 2013; 8(9):e74495. PubMed ID: 24040259 [TBL] [Abstract][Full Text] [Related]
6. The response regulator PhoP negatively regulates Yersinia pseudotuberculosis and Yersinia pestis biofilms. Sun YC; Koumoutsi A; Darby C FEMS Microbiol Lett; 2009 Jan; 290(1):85-90. PubMed ID: 19025559 [TBL] [Abstract][Full Text] [Related]
7. The small RNA chaperone Hfq is required for the virulence of Yersinia pseudotuberculosis. Schiano CA; Bellows LE; Lathem WW Infect Immun; 2010 May; 78(5):2034-44. PubMed ID: 20231416 [TBL] [Abstract][Full Text] [Related]
8. Evolution and virulence contributions of the autotransporter proteins YapJ and YapK of Yersinia pestis CO92 and their homologs in Y. pseudotuberculosis IP32953. Lenz JD; Temple BR; Miller VL Infect Immun; 2012 Oct; 80(10):3693-705. PubMed ID: 22802344 [TBL] [Abstract][Full Text] [Related]
9. A Trimeric Autotransporter Enhances Biofilm Cohesiveness in Yersinia pseudotuberculosis but Not in Yersinia pestis. Calder JT; Christman ND; Hawkins JM; Erickson DL J Bacteriol; 2020 Sep; 202(20):. PubMed ID: 32778558 [TBL] [Abstract][Full Text] [Related]
11. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Achtman M; Zurth K; Morelli G; Torrea G; Guiyoule A; Carniel E Proc Natl Acad Sci U S A; 1999 Nov; 96(24):14043-8. PubMed ID: 10570195 [TBL] [Abstract][Full Text] [Related]
12. Bioluminescent tracing of a Yersinia pestis pCD1 Zhou Y; Zhou J; Ji Y; Li L; Tan Y; Tian G; Yang R; Wang X Microbes Infect; 2018 Mar; 20(3):166-175. PubMed ID: 29180033 [TBL] [Abstract][Full Text] [Related]
13. Yersinia ironomics: comparison of iron transporters among Yersinia pestis biotypes and its nearest neighbor, Yersinia pseudotuberculosis. Forman S; Paulley JT; Fetherston JD; Cheng YQ; Perry RD Biometals; 2010 Apr; 23(2):275-94. PubMed ID: 20049509 [TBL] [Abstract][Full Text] [Related]
14. Silencing urease: a key evolutionary step that facilitated the adaptation of Yersinia pestis to the flea-borne transmission route. Chouikha I; Hinnebusch BJ Proc Natl Acad Sci U S A; 2014 Dec; 111(52):18709-14. PubMed ID: 25453069 [TBL] [Abstract][Full Text] [Related]
15. High-throughput analysis of Yersinia pseudotuberculosis gene essentiality in optimised in vitro conditions, and implications for the speciation of Yersinia pestis. Willcocks SJ; Stabler RA; Atkins HS; Oyston PF; Wren BW BMC Microbiol; 2018 May; 18(1):46. PubMed ID: 29855259 [TBL] [Abstract][Full Text] [Related]
16. Recent findings regarding maintenance of enzootic variants of Yersinia pestis in sylvatic reservoirs and their significance in the evolution of epidemic plague. Bearden SW; Brubaker RR Vector Borne Zoonotic Dis; 2010; 10(1):85-92. PubMed ID: 20158336 [TBL] [Abstract][Full Text] [Related]
17. The role of the phoPQ operon in the pathogenesis of the fully virulent CO92 strain of Yersinia pestis and the IP32953 strain of Yersinia pseudotuberculosis. Bozue J; Mou S; Moody KL; Cote CK; Trevino S; Fritz D; Worsham P Microb Pathog; 2011 Jun; 50(6):314-21. PubMed ID: 21320584 [TBL] [Abstract][Full Text] [Related]
18. The ability to replicate in macrophages is conserved between Yersinia pestis and Yersinia pseudotuberculosis. Pujol C; Bliska JB Infect Immun; 2003 Oct; 71(10):5892-9. PubMed ID: 14500510 [TBL] [Abstract][Full Text] [Related]
19. A putative DNA adenine methyltransferase is involved in Yersinia pseudotuberculosis pathogenicity. Pouillot F; Fayolle C; Carniel E Microbiology (Reading); 2007 Aug; 153(Pt 8):2426-2434. PubMed ID: 17660407 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of the Role of the opgGH Operon in Yersinia pseudotuberculosis and Its Deletion during the Emergence of Yersinia pestis. Quintard K; Dewitte A; Reboul A; Madec E; Bontemps-Gallo S; Dondeyne J; Marceau M; Simonet M; Lacroix JM; Sebbane F Infect Immun; 2015 Sep; 83(9):3638-47. PubMed ID: 26150539 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]