BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 20543078)

  • 1. Mitochondrial dysfunction in the type 2 diabetic heart is associated with alterations in spatially distinct mitochondrial proteomes.
    Dabkowski ER; Baseler WA; Williamson CL; Powell M; Razunguzwa TT; Frisbee JC; Hollander JM
    Am J Physiol Heart Circ Physiol; 2010 Aug; 299(2):H529-40. PubMed ID: 20543078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic alterations of distinct mitochondrial subpopulations in the type 1 diabetic heart: contribution of protein import dysfunction.
    Baseler WA; Dabkowski ER; Williamson CL; Croston TL; Thapa D; Powell MJ; Razunguzwa TT; Hollander JM
    Am J Physiol Regul Integr Comp Physiol; 2011 Feb; 300(2):R186-200. PubMed ID: 21048079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diabetic cardiomyopathy-associated dysfunction in spatially distinct mitochondrial subpopulations.
    Dabkowski ER; Williamson CL; Bukowski VC; Chapman RS; Leonard SS; Peer CJ; Callery PS; Hollander JM
    Am J Physiol Heart Circ Physiol; 2009 Feb; 296(2):H359-69. PubMed ID: 19060128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transgenic overexpression of mitofilin attenuates diabetes mellitus-associated cardiac and mitochondria dysfunction.
    Thapa D; Nichols CE; Lewis SE; Shepherd DL; Jagannathan R; Croston TL; Tveter KJ; Holden AA; Baseler WA; Hollander JM
    J Mol Cell Cardiol; 2015 Feb; 79():212-23. PubMed ID: 25463274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional deficiencies of subsarcolemmal mitochondria in the type 2 diabetic human heart.
    Croston TL; Thapa D; Holden AA; Tveter KJ; Lewis SE; Shepherd DL; Nichols CE; Long DM; Olfert IM; Jagannathan R; Hollander JM
    Am J Physiol Heart Circ Physiol; 2014 Jul; 307(1):H54-65. PubMed ID: 24778174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced apoptotic propensity in diabetic cardiac mitochondria: influence of subcellular spatial location.
    Williamson CL; Dabkowski ER; Baseler WA; Croston TL; Alway SE; Hollander JM
    Am J Physiol Heart Circ Physiol; 2010 Feb; 298(2):H633-42. PubMed ID: 19966057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversal of mitochondrial proteomic loss in Type 1 diabetic heart with overexpression of phospholipid hydroperoxide glutathione peroxidase.
    Baseler WA; Dabkowski ER; Jagannathan R; Thapa D; Nichols CE; Shepherd DL; Croston TL; Powell M; Razunguzwa TT; Lewis SE; Schnell DM; Hollander JM
    Am J Physiol Regul Integr Comp Physiol; 2013 Apr; 304(7):R553-65. PubMed ID: 23408027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure overload differentially affects respiratory capacity in interfibrillar and subsarcolemmal mitochondria.
    Schwarzer M; Schrepper A; Amorim PA; Osterholt M; Doenst T
    Am J Physiol Heart Circ Physiol; 2013 Feb; 304(4):H529-37. PubMed ID: 23241325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered expression of the adenine nucleotide translocase isoforms and decreased ATP synthase activity in skeletal muscle mitochondria in heart failure.
    Rosca MG; Okere IA; Sharma N; Stanley WC; Recchia FA; Hoppel CL
    J Mol Cell Cardiol; 2009 Jun; 46(6):927-35. PubMed ID: 19233197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiac mitochondrial proteome dynamics with heavy water reveals stable rate of mitochondrial protein synthesis in heart failure despite decline in mitochondrial oxidative capacity.
    Shekar KC; Li L; Dabkowski ER; Xu W; Ribeiro RF; Hecker PA; Recchia FA; Sadygov RG; Willard B; Kasumov T; Stanley WC
    J Mol Cell Cardiol; 2014 Oct; 75():88-97. PubMed ID: 24995939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. miR-141 as a regulator of the mitochondrial phosphate carrier (Slc25a3) in the type 1 diabetic heart.
    Baseler WA; Thapa D; Jagannathan R; Dabkowski ER; Croston TL; Hollander JM
    Am J Physiol Cell Physiol; 2012 Dec; 303(12):C1244-51. PubMed ID: 23034391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sex differences in the regulation of spatially distinct cardiac mitochondrial subpopulations.
    Ribeiro RF; Ronconi KS; Morra EA; Do Val Lima PR; Porto ML; Vassallo DV; Figueiredo SG; Stefanon I
    Mol Cell Biochem; 2016 Aug; 419(1-2):41-51. PubMed ID: 27370644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria.
    Chen Q; Moghaddas S; Hoppel CL; Lesnefsky EJ
    Am J Physiol Cell Physiol; 2008 Feb; 294(2):C460-6. PubMed ID: 18077608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aging selectively decreases oxidative capacity in rat heart interfibrillar mitochondria.
    Fannin SW; Lesnefsky EJ; Slabe TJ; Hassan MO; Hoppel CL
    Arch Biochem Biophys; 1999 Dec; 372(2):399-407. PubMed ID: 10600182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging.
    Judge S; Jang YM; Smith A; Hagen T; Leeuwenburgh C
    FASEB J; 2005 Mar; 19(3):419-21. PubMed ID: 15642720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rat cardiac mitochondrial sub-populations show distinct features of oxidative phosphorylation during ischemia, reperfusion and ischemic preconditioning.
    Kurian GA; Berenshtein E; Saada A; Chevion M
    Cell Physiol Biochem; 2012; 30(1):83-94. PubMed ID: 22759958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Type 1 diabetic akita mouse hearts are insulin sensitive but manifest structurally abnormal mitochondria that remain coupled despite increased uncoupling protein 3.
    Bugger H; Boudina S; Hu XX; Tuinei J; Zaha VG; Theobald HA; Yun UJ; McQueen AP; Wayment B; Litwin SE; Abel ED
    Diabetes; 2008 Nov; 57(11):2924-32. PubMed ID: 18678617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic adaptation to chronic hypoxia in cardiac mitochondria.
    Heather LC; Cole MA; Tan JJ; Ambrose LJ; Pope S; Abd-Jamil AH; Carter EE; Dodd MS; Yeoh KK; Schofield CJ; Clarke K
    Basic Res Cardiol; 2012 May; 107(3):268. PubMed ID: 22538979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial proteome disruption in the diabetic heart through targeted epigenetic regulation at the mitochondrial heat shock protein 70 (mtHsp70) nuclear locus.
    Shepherd DL; Hathaway QA; Nichols CE; Durr AJ; Pinti MV; Hughes KM; Kunovac A; Stine SM; Hollander JM
    J Mol Cell Cardiol; 2018 Jun; 119():104-115. PubMed ID: 29733819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the cardiolipin biosynthetic pathway and its interactions in the diabetic heart.
    Croston TL; Shepherd DL; Thapa D; Nichols CE; Lewis SE; Dabkowski ER; Jagannathan R; Baseler WA; Hollander JM
    Life Sci; 2013 Sep; 93(8):313-22. PubMed ID: 23872101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.