These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 20543126)

  • 21. Elastic deformation and energy loss of flapping fly wings.
    Lehmann FO; Gorb S; Nasir N; Schützner P
    J Exp Biol; 2011 Sep; 214(Pt 17):2949-61. PubMed ID: 21832138
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.
    Sun M; Wu JH
    J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rotational accelerations stabilize leading edge vortices on revolving fly wings.
    Lentink D; Dickinson MH
    J Exp Biol; 2009 Aug; 212(Pt 16):2705-19. PubMed ID: 19648415
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Parameter study of simplified dragonfly airfoil geometry at Reynolds number of 6000.
    Levy DE; Seifert A
    J Theor Biol; 2010 Oct; 266(4):691-702. PubMed ID: 20673771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of advance ratio on the aerodynamics of revolving wings.
    Dickson WB; Dickinson MH
    J Exp Biol; 2004 Nov; 207(Pt 24):4269-81. PubMed ID: 15531648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight.
    Vargas A; Mittal R; Dong H
    Bioinspir Biomim; 2008 Jun; 3(2):026004. PubMed ID: 18503106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings.
    Lehmann FO; Pick S
    J Exp Biol; 2007 Apr; 210(Pt 8):1362-77. PubMed ID: 17401119
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Leading-edge vortex improves lift in slow-flying bats.
    Muijres FT; Johansson LC; Barfield R; Wolf M; Spedding GR; Hedenström A
    Science; 2008 Feb; 319(5867):1250-3. PubMed ID: 18309085
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings.
    Maybury WJ; Lehmann FO
    J Exp Biol; 2004 Dec; 207(Pt 26):4707-26. PubMed ID: 15579564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flexible clap and fling in tiny insect flight.
    Miller LA; Peskin CS
    J Exp Biol; 2009 Oct; 212(19):3076-90. PubMed ID: 19749100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unsteady aerodynamic forces of a flapping wing.
    Wu JH; Sun M
    J Exp Biol; 2004 Mar; 207(Pt 7):1137-50. PubMed ID: 14978056
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W; Stamhuis EJ
    Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of corrugation of the dragonfly wing on gliding performance.
    Kim WK; Ko JH; Park HC; Byun D
    J Theor Biol; 2009 Oct; 260(4):523-30. PubMed ID: 19631665
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aerodynamic yawing moment characteristics of bird wings.
    Sachs G
    J Theor Biol; 2005 Jun; 234(4):471-8. PubMed ID: 15808868
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vortexlet models of flapping flexible wings show tuning for force production and control.
    Mountcastle AM; Daniel TL
    Bioinspir Biomim; 2010 Dec; 5(4):045005. PubMed ID: 21098955
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of slotted wing tips on yawing moment characteristics.
    Sachs G; Moelyadi MA
    J Theor Biol; 2006 Mar; 239(1):93-100. PubMed ID: 16199060
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vortex interaction of tandem pitching and plunging plates: a two-dimensional model of hovering dragonfly-like flight.
    Rival D; Schönweitz D; Tropea C
    Bioinspir Biomim; 2011 Mar; 6(1):016008. PubMed ID: 21335652
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A computational fluid dynamics of 'clap and fling' in the smallest insects.
    Miller LA; Peskin CS
    J Exp Biol; 2005 Jan; 208(Pt 2):195-212. PubMed ID: 15634840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theoretical study on two-dimensional aerodynamic characteristics of unsteady wings.
    Azuma A; Okamoto M
    J Theor Biol; 2005 May; 234(1):67-78. PubMed ID: 15721036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A computational investigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering.
    Ramamurti R; Sandberg WC
    J Exp Biol; 2007 Mar; 210(Pt 5):881-96. PubMed ID: 17297147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.