These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 20543294)

  • 1. Visual properties of an object affect time to target in VR reaching tasks.
    Powell V; Stevens B; Hand S; Simmonds M
    Stud Health Technol Inform; 2010; 154():180-4. PubMed ID: 20543294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virtual reality environments to enhance upper limb functional recovery in patients with hemiparesis.
    Levin MF; Knaut LA; Magdalon EC; Subramanian S
    Stud Health Technol Inform; 2009; 145():94-108. PubMed ID: 19592789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of increasing visual load on aurally and visually guided target acquisition in a virtual environment.
    Pierno AC; Caria A; Glover S; Castiello U
    Appl Ergon; 2005 May; 36(3):335-43. PubMed ID: 15854577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual cues signaling object grasp reduce interference in motor learning.
    Cothros N; Wong J; Gribble PL
    J Neurophysiol; 2009 Oct; 102(4):2112-20. PubMed ID: 19657075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of the evoked potential P3 component for control in a virtual apartment.
    Bayliss JD
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):113-6. PubMed ID: 12899249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual/Real transfer of spatial learning: impact of activity according to the retention delay.
    Wallet G; Sauzéon H; Rodrigues J; Larrue F; N'kaoua B
    Stud Health Technol Inform; 2010; 154():145-9. PubMed ID: 20543287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of viewing angle on arm reaching while standing in a virtual environment: potential for virtual rehabilitation.
    Ustinova KI; Perkins J; Szostakowski L; Tamkei LS; Leonard WA
    Acta Psychol (Amst); 2010 Feb; 133(2):180-90. PubMed ID: 20021998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of individual hand performance in box trainers compared to virtual reality trainers.
    Madan AK; Frantzides CT; Shervin N; Tebbit CL
    Am Surg; 2003 Dec; 69(12):1112-4. PubMed ID: 14700302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning rate for laparoscopic surgical skills on MIST VR, a virtual reality simulator: quality of human-computer interface.
    Chaudhry A; Sutton C; Wood J; Stone R; McCloy R
    Ann R Coll Surg Engl; 1999 Jul; 81(4):281-6. PubMed ID: 10615201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of visual realism on search tasks in mixed reality simulation.
    Lee C; Rincon GA; Meyer G; Höllerer T; Bowman DA
    IEEE Trans Vis Comput Graph; 2013 Apr; 19(4):547-56. PubMed ID: 23428438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sounding better: fast audio cues increase walk speed in treadmill-mediated virtual rehabilitation environments.
    Powell W; Stevens B; Hand S; Simmonds M
    Stud Health Technol Inform; 2010; 154():202-7. PubMed ID: 20543298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a data management tool for investigating multivariate space and free will experiences in virtual reality.
    Morie JF; Iyer K; Luigi DP; Williams J; Dozois A; Rizzo AS
    Appl Psychophysiol Biofeedback; 2005 Sep; 30(3):319-31. PubMed ID: 16167194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manually locating physical and virtual reality objects.
    Chen KB; Kimmel RA; Bartholomew A; Ponto K; Gleicher ML; Radwin RG
    Hum Factors; 2014 Sep; 56(6):1163-76. PubMed ID: 25277024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-phase training on a virtual reality simulator improves technical performance in tele-robotic surgery.
    Balasundaram I; Aggarwal R; Darzi A
    Int J Med Robot; 2008 Jun; 4(2):139-45. PubMed ID: 18327876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Training in virtual environments: transfer to real world tasks and equivalence to real task training.
    Rose FD; Attree EA; Brooks BM; Parslow DM; Penn PR; Ambihaipahan N
    Ergonomics; 2000 Apr; 43(4):494-511. PubMed ID: 10801083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sex differences in directional cue use in a virtual landscape.
    Chai XJ; Jacobs LF
    Behav Neurosci; 2009 Apr; 123(2):276-83. PubMed ID: 19331451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of virtual reality on postural stability during movements of quiet stance.
    Horlings CG; Carpenter MG; Küng UM; Honegger F; Wiederhold B; Allum JH
    Neurosci Lett; 2009 Feb; 451(3):227-31. PubMed ID: 19146921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired short-term motor learning in multiple sclerosis: evidence from virtual reality.
    Leocani L; Comi E; Annovazzi P; Rovaris M; Rossi P; Cursi M; Comola M; Martinelli V; Comi G
    Neurorehabil Neural Repair; 2007; 21(3):273-8. PubMed ID: 17351084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-computer interface: changes in performance using virtual reality techniques.
    Ron-Angevin R; Díaz-Estrella A
    Neurosci Lett; 2009 Jan; 449(2):123-7. PubMed ID: 19000739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a virtual reality system for the rehabilitation of the upper limb after stroke.
    Crosbie J; McDonough S; Lennon S; McNeill M
    Stud Health Technol Inform; 2005; 117():218-22. PubMed ID: 16282673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.