These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 20543418)

  • 21. Finite element analysis of four thread-form configurations in a stepped screw implant.
    Geng JP; Ma QS; Xu W; Tan KB; Liu GR
    J Oral Rehabil; 2004 Mar; 31(3):233-9. PubMed ID: 15025655
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fine thread versus coarse thread. A comparison of the maximum holding power.
    Gausepohl T; Möhring R; Pennig D; Koebke J
    Injury; 2001 Dec; 32 Suppl 4():SD1-7. PubMed ID: 11812471
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Corrective force analysis for scoliosis from implant rod deformation.
    Salmingo R; Tadano S; Fujisaki K; Abe Y; Ito M
    Clin Biomech (Bristol, Avon); 2012 Jul; 27(6):545-50. PubMed ID: 22321374
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of bone quality and pedicle screw design on the fixation strength during Axial Pull-out test: A 2D Axisymmetric FE study.
    Makaram H; Swaminathan R
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4924-4927. PubMed ID: 34892312
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finite element study on the amount of injection cement during the pedicle screw augmentation.
    Yan YB; Teo EC; Qiu TX; Wu ZX; Qi W; Liu D; Lei W
    J Spinal Disord Tech; 2013 Feb; 26(1):29-36. PubMed ID: 22015627
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Incomplete insertion of pedicle screws in a standard construct reduces the fatigue life: A biomechanical analysis.
    Chu YL; Chen CH; Tsuang FY; Chiang CJ; Wu Y; Kuo YJ
    PLoS One; 2019; 14(11):e0224699. PubMed ID: 31675364
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D pull-out finite element simulation of the pedicle screw-trabecular bone interface at strain rates.
    Çetin A; Bircan DA
    Proc Inst Mech Eng H; 2022 Jan; 236(1):134-144. PubMed ID: 34479459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical analysis of proximal junctional failure following adult spinal instrumentation using a comprehensive hybrid modeling approach.
    Fradet L; Wang X; Lenke LG; Aubin CE
    Clin Biomech (Bristol, Avon); 2016 Nov; 39():122-128. PubMed ID: 27750079
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Finite Element Analysis of Tibial Implants - Effect of Fixation Design and Friction Model.
    Hashemi A; Shirazi-Adl A
    Comput Methods Biomech Biomed Engin; 2000; 3(3):183-201. PubMed ID: 11264847
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cancellous bone screw purchase: a comparison of synthetic femurs, human femurs, and finite element analysis.
    Zdero R; Olsen M; Bougherara H; Schemitsch EH
    Proc Inst Mech Eng H; 2008 Nov; 222(8):1175-83. PubMed ID: 19143412
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Biomechanical Analysis of Orthopedic Screw Under Bone Remodeling].
    Long D; Ji A; Zhao Z
    Zhongguo Yi Liao Qi Xie Za Zhi; 2020 Mar; 44(3):194-198. PubMed ID: 32621424
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of bone material properties on effective region in screw-bone model: an experimental and finite element study.
    Liu S; Qi W; Zhang Y; Wu ZX; Yan YB; Lei W
    Biomed Eng Online; 2014 Jun; 13():83. PubMed ID: 24952724
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimization of spinal implant screw for lower vertebra through finite element studies.
    Biswas J; Karmakar S; Majumder S; Banerjee PS; Saha S; Roychowdhury A
    J Long Term Eff Med Implants; 2014; 24(2-3):99-108. PubMed ID: 25272208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A finite element study on intra-operative corrective forces and evaluation of screw density in scoliosis surgeries.
    Musapoor A; Nikkhoo M; Haghpanahi M
    Proc Inst Mech Eng H; 2018 Dec; 232(12):1245-1254. PubMed ID: 30453829
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparative study of tapped and untapped pilot holes for bicortical orthopedic screws - 3D finite element analysis with an experimental test.
    Ketata H; Affes F; Kharrat M; Dammak M
    Biomed Tech (Berl); 2019 Sep; 64(5):563-570. PubMed ID: 30939108
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of the Relation Between Preload Values and Pull-Out Force of the Cortical Screw Used in Bone Fracture.
    Çelik T
    J Biomech Eng; 2021 Sep; 143(9):. PubMed ID: 33991097
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-linear explicit micro-FE models accurately predict axial pull-out force of cortical screws in human tibial cortical bone.
    Ovesy M; Silva-Henao JD; Fletcher JWA; Gueorguiev B; Zysset PK; Varga P
    J Mech Behav Biomed Mater; 2022 Feb; 126():105002. PubMed ID: 34894498
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Novel Methodology to Estimate Bone Mechanical Properties Using Dual-Energy Imaging to Improve Pedicle Screw Fixation.
    Solorzano Barrera C; Villemure I; Aubin CÉ
    J Musculoskelet Neuronal Interact; 2023 Sep; 23(3):316-327. PubMed ID: 37654217
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of Distraction Force on Growth and Biomechanics of the Spine: A Finite Element Study on Normal Juvenile Spine With Dual Growth Rod Instrumentation.
    Agarwal A; Agarwal AK; Jayaswal A; Goel VK
    Spine Deform; 2014 Jul; 2(4):260-269. PubMed ID: 27927346
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study.
    Hansson S; Werke M
    J Biomech; 2003 Sep; 36(9):1247-58. PubMed ID: 12893033
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.