These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 2054345)

  • 1. An aspartate residue in yeast alcohol dehydrogenase I determines the specificity for coenzyme.
    Fan F; Lorenzen JA; Plapp BV
    Biochemistry; 1991 Jul; 30(26):6397-401. PubMed ID: 2054345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substitution of cysteine-153 ligated to the catalytic zinc in yeast alcohol dehydrogenase with aspartic acid and analysis of mechanisms of related medium chain dehydrogenases.
    Kim K; Plapp BV
    Chem Biol Interact; 2019 Apr; 302():172-182. PubMed ID: 30721696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the affinity and specificity of yeast alcohol dehydrogenase I for coenzymes.
    Fan F; Plapp BV
    Arch Biochem Biophys; 1999 Jul; 367(2):240-9. PubMed ID: 10395740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of aspartic acid 38 in the cofactor specificity of Drosophila alcohol dehydrogenase.
    Chen Z; Lee WR; Chang SH
    Eur J Biochem; 1991 Dec; 202(2):263-7. PubMed ID: 1761031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substitution of arginine for histidine-47 in the coenzyme binding site of yeast alcohol dehydrogenase I.
    Gould RM; Plapp BV
    Biochemistry; 1990 Jun; 29(23):5463-8. PubMed ID: 2201405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adding a positive charge at residue 46 of Drosophila alcohol dehydrogenase increases cofactor specificity for NADP+.
    Chen Z; Tsigelny I; Lee WR; Baker ME; Chang SH
    FEBS Lett; 1994 Dec; 356(1):81-5. PubMed ID: 7988726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Residues that influence coenzyme preference in the aldehyde dehydrogenases.
    González-Segura L; Riveros-Rosas H; Julián-Sánchez A; Muñoz-Clares RA
    Chem Biol Interact; 2015 Jun; 234():59-74. PubMed ID: 25601141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific base catalysis by yeast alcohol dehydrogenase I with substitutions of histidine-48 by glutamate or serine residues in the proton relay system.
    Plapp BV; Kratzer DA; Souhrada SK; Warth E; Jacobi T
    Chem Biol Interact; 2023 Sep; 382():110558. PubMed ID: 37247811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alpha-isoenzyme of alcohol dehydrogenase from monkey liver. Cloning, expression, mechanism, coenzyme, and substrate specificity.
    Light DR; Dennis MS; Forsythe IJ; Liu CC; Green DW; Kratzer DA; Plapp BV
    J Biol Chem; 1992 Jun; 267(18):12592-9. PubMed ID: 1618764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Change of nucleotide specificity and enhancement of catalytic efficiency in single point mutants of Vibrio harveyi aldehyde dehydrogenase.
    Zhang L; Ahvazi B; Szittner R; Vrielink A; Meighen E
    Biochemistry; 1999 Aug; 38(35):11440-7. PubMed ID: 10471295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implication by site-directed mutagenesis of Arg314 and Tyr316 in the coenzyme site of pig mitochondrial NADP-dependent isocitrate dehydrogenase.
    Lee P; Colman RF
    Arch Biochem Biophys; 2002 May; 401(1):81-90. PubMed ID: 12054490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of an arginine residue in the dual coenzyme-specific glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides that plays a key role in binding NADP+ but not NAD+.
    Levy HR; Vought VE; Yin X; Adams MJ
    Arch Biochem Biophys; 1996 Feb; 326(1):145-51. PubMed ID: 8579362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The active site architecture of a short-chain dehydrogenase defined by site-directed mutagenesis and structure modeling.
    Ribas de Pouplana L; Fothergill-Gilmore LA
    Biochemistry; 1994 Jun; 33(23):7047-55. PubMed ID: 8003469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-guided engineering of the coenzyme specificity of Pseudomonas fluorescens mannitol 2-dehydrogenase to enable efficient utilization of NAD(H) and NADP(H).
    Bubner P; Klimacek M; Nidetzky B
    FEBS Lett; 2008 Jan; 582(2):233-7. PubMed ID: 18082142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural determinants of nucleotide coenzyme specificity in the distinctive dinucleotide binding fold of HMG-CoA reductase from Pseudomonas mevalonii.
    Friesen JA; Lawrence CM; Stauffacher CV; Rodwell VW
    Biochemistry; 1996 Sep; 35(37):11945-50. PubMed ID: 8810898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of coenzyme binding to horse liver alcohol dehydrogenase.
    LeBrun LA; Plapp BV
    Biochemistry; 1999 Sep; 38(38):12387-93. PubMed ID: 10493806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creation of an NADP-dependent pyruvate dehydrogenase multienzyme complex by protein engineering.
    Bocanegra JA; Scrutton NS; Perham RN
    Biochemistry; 1993 Mar; 32(11):2737-40. PubMed ID: 8457541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Switch of coenzyme specificity of mouse lung carbonyl reductase by substitution of threonine 38 with aspartic acid.
    Nakanishi M; Matsuura K; Kaibe H; Tanaka N; Nonaka T; Mitsui Y; Hara A
    J Biol Chem; 1997 Jan; 272(4):2218-22. PubMed ID: 8999926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of coenzyme binding by a single point mutation at the coenzyme binding domain of E. coli lactaldehyde dehydrogenase.
    Rodríguez-Zavala JS
    Protein Sci; 2008 Mar; 17(3):563-70. PubMed ID: 18218709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalysis by yeast alcohol dehydrogenase.
    Plapp BV; Ganzhorn AJ; Gould RM; Green DW; Jacobi T; Warth E; Kratzer DA
    Adv Exp Med Biol; 1991; 284():241-51. PubMed ID: 2053479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.