These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 20543714)

  • 1. A new approach to assessing the structural total peripheral resistance amplifier in renal (Page) hypertension in conscious rabbits.
    Korner PI; Wright CE; Angus JA
    J Hypertens; 2010 Sep; 28(9):1862-74. PubMed ID: 20543714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural factors increase blood pressure through the interaction of resistance vessel geometry with neurohumoral and local factors: estimates in rabbits with renal cellophane-wrap hypertension with intact effectors and during neurohumoral blockade.
    Wright CE; Angus JA; Korner PI
    J Hypertens; 2002 Mar; 20(3):471-83. PubMed ID: 11875315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced total peripheral vascular responsiveness in hypertension accords with the amplifier hypothesis.
    Wright CE; Angus JA
    J Hypertens; 1999 Dec; 17(12 Pt 1):1687-96. PubMed ID: 10658934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced responses to ganglion blockade do not reflect sympathetic nervous system contribution to angiotensin II-induced hypertension.
    Moretti JL; Burke SL; Evans RG; Lambert GW; Head GA
    J Hypertens; 2009 Sep; 27(9):1838-48. PubMed ID: 19512943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vascular reactivity of rabbit isolated renal and femoral resistance arteries in renal wrap hypertension.
    Khammy MM; Angus JA; Wright CE
    Eur J Pharmacol; 2016 Feb; 773():32-41. PubMed ID: 26806799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vascular amplifier properties in renovascular hypertension in conscious rabbits. Hindquarter responses to constrictor and dilator stimuli.
    Wright CE; Angus JA; Korner PI
    Hypertension; 1987 Feb; 9(2):122-31. PubMed ID: 3818010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Total peripheral resistance responsiveness during the development of secondary renal hypertension in dogs.
    Anderson WP; Shweta A; Evans RG; Edgley AJ; Gao Y
    J Hypertens; 2007 Mar; 25(3):649-62. PubMed ID: 17278982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of vasopressor agents on the vessel wall].
    Lindner E
    Med Welt; 1975 May; 26(21):1017-24. PubMed ID: 1095885
    [No Abstract]   [Full Text] [Related]  

  • 9. T-cells in angiotensin-II-induced vascular damage.
    Geiger H
    Nephrol Dial Transplant; 2008 Apr; 23(4):1107-8. PubMed ID: 18079148
    [No Abstract]   [Full Text] [Related]  

  • 10. Estimation of the vascular resistance amplifier in the renal vascular bed in conscious hypertensive rabbits: comparison with the total peripheral vasculature.
    Khammy MM; Angus JA; Wright CE
    Heliyon; 2020 Apr; 6(4):e03810. PubMed ID: 32368652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lack of prognostic role of endothelial dysfunction in subcutaneous small resistance arteries of hypertensive patients.
    Rizzoni D; Porteri E; De Ciuceis C; Boari GE; Zani F; Miclini M; Paiardi S; Tiberio GA; Giulini SM; Muiesan ML; Castellano M; Rosei EA
    J Hypertens; 2006 May; 24(5):867-73. PubMed ID: 16612248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of vasoactive drugs on renal vascular resistance in obstructive disease.
    Shenasky JH; Gillenwater JY; Graham SD; Wooster LD
    J Urol; 1971 Sep; 106(3):355-9. PubMed ID: 4328969
    [No Abstract]   [Full Text] [Related]  

  • 13. Biomechanics of resistance artery wall remodeling in angiotensin-II hypertension and subsequent recovery.
    Nádasy GL; Várbíró S; Szekeres M; Kocsis A; Székács B; Monos E; Kollai M
    Kidney Blood Press Res; 2010; 33(1):37-47. PubMed ID: 20185930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive changes of cardiovascular design in spontaneous and renal hypertension. Hemodynamic studies in rats.
    Lundgren Y
    Acta Physiol Scand Suppl; 1974; 408():1-62. PubMed ID: 4528407
    [No Abstract]   [Full Text] [Related]  

  • 15. Release of endothelium-derived relaxing factor from resistance arteries in hypertension.
    Angus JA; Dyke AC; Jennings GL; Korner PI; Sudhir K; Ward JE; Wright CE
    Kidney Int Suppl; 1992 Jun; 37():S73-8. PubMed ID: 1378518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypertension alters slope and range but not sensitivity to vasoconstrictor and vasodilator agents in the rabbit hindquarter.
    Wright CE; Angus JA; Korner PI
    Clin Exp Pharmacol Physiol; 1986 Apr; 13(4):301-4. PubMed ID: 3731533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of antihypertensive treatment on vascular remodeling in essential hypertensive patients.
    Schiffrin EL; Deng LY; Larochelle P
    J Cardiovasc Pharmacol; 1994; 24 Suppl 3():S51-6. PubMed ID: 7700067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracellular superoxide dismutase is a major determinant of nitric oxide bioavailability: in vivo and ex vivo evidence from ecSOD-deficient mice.
    Jung O; Marklund SL; Geiger H; Pedrazzini T; Busse R; Brandes RP
    Circ Res; 2003 Oct; 93(7):622-9. PubMed ID: 12933702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The effect of verapamil on cardio- and hemodynamics in rats with various models of hypertension].
    Spasov AA; Gurbanov KG; Seredintseva NV; Paperno AA
    Eksp Klin Farmakol; 1997; 60(3):30-3. PubMed ID: 9324394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The combined action of humoral constrictor stimuli on the arterial and venous vessels of the skeletal muscle].
    Talash SA; Kudriashov IuA; Tkachenko BI
    Fiziol Zh SSSR Im I M Sechenova; 1990 Jun; 76(6):824-9. PubMed ID: 2172049
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.