These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

547 related articles for article (PubMed ID: 20543730)

  • 1. Relationship between body composition, leg strength, anaerobic power, and on-ice skating performance in division I men's hockey athletes.
    Potteiger JA; Smith DL; Maier ML; Foster TS
    J Strength Cond Res; 2010 Jul; 24(7):1755-62. PubMed ID: 20543730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship Between Physiological Off-Ice Testing, On-Ice Skating, and Game Performance in Division I Female Ice Hockey Players.
    Boland M; Delude K; Miele EM
    J Strength Cond Res; 2019 Jun; 33(6):1619-1628. PubMed ID: 29016475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological correlates of skating performance in women's and men's ice hockey.
    Gilenstam KM; Thorsen K; Henriksson-Larsén KB
    J Strength Cond Res; 2011 Aug; 25(8):2133-42. PubMed ID: 21785292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Body Composition and On-Ice Skate Times for National Collegiate Athletic Association Division I Collegiate Male and Female Ice Hockey Athletes.
    Czeck MA; Roelofs EJ; Dietz C; Bosch TA; Dengel DR
    J Strength Cond Res; 2022 Jan; 36(1):187-192. PubMed ID: 34941612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship Between Skating Economy and Performance During a Repeated-Shift Test in Elite and Subelite Ice Hockey Players.
    Lamoureux NR; Tomkinson GR; Peterson BJ; Fitzgerald JS
    J Strength Cond Res; 2018 Apr; 32(4):1109-1113. PubMed ID: 29324580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Division I Hockey Players Generate More Power Than Division III Players During on- and Off-Ice Performance Tests.
    Peterson BJ; Fitzgerald JS; Dietz CC; Ziegler KS; Ingraham SJ; Baker SE; Snyder EM
    J Strength Cond Res; 2015 May; 29(5):1191-6. PubMed ID: 25436625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Off-Ice Resisted Sprints Best Predict All-Out Skating Performance in Varsity Hockey Players.
    Thompson KMA; Safadie A; Ford J; Burr JF
    J Strength Cond Res; 2022 Sep; 36(9):2597-2601. PubMed ID: 33136771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laboratory Determinants of Repeated-Sprint and Sport-Specific-Technique Ability in World-Class Ice Sledge Hockey Players.
    Baumgart JK; Sandbakk Ø
    Int J Sports Physiol Perform; 2016 Mar; 11(2):182-90. PubMed ID: 26182436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Off-Ice Anaerobic Power Does Not Predict On-Ice Repeated Shift Performance in Hockey.
    Peterson BJ; Fitzgerald JS; Dietz CC; Ziegler KS; Baker SE; Snyder EM
    J Strength Cond Res; 2016 Sep; 30(9):2375-81. PubMed ID: 26808844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple Off-Ice Performance Variables Predict On-Ice Skating Performance in Male and Female Division III Ice Hockey Players.
    Janot JM; Beltz NM; Dalleck LD
    J Sports Sci Med; 2015 Sep; 14(3):522-9. PubMed ID: 26336338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationships to skating performance in competitive hockey players.
    Farlinger CM; Kruisselbrink LD; Fowles JR
    J Strength Cond Res; 2007 Aug; 21(3):915-22. PubMed ID: 17685681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of Ice Hockey Players' On-Ice Sprint With Combined Plyometric and Strength Training.
    Dæhlin TE; Haugen OC; Haugerud S; Hollan I; Raastad T; Rønnestad BR
    Int J Sports Physiol Perform; 2017 Aug; 12(7):893-900. PubMed ID: 27918670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the relationship between upper-body strength, power, and sprint performance in ice sledge hockey.
    Skovereng K; Ettema G; Welde B; Sandbakk Ø
    J Strength Cond Res; 2013 Dec; 27(12):3461-6. PubMed ID: 23478478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between strength qualities and short track speed skating performance in young athletes.
    Felser S; Behrens M; Fischer S; Heise S; Bäumler M; Salomon R; Bruhn S
    Scand J Med Sci Sports; 2016 Feb; 26(2):165-71. PubMed ID: 25683194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A physical profile of elite female ice hockey players from the USA.
    Ransdell LB; Murray T
    J Strength Cond Res; 2011 Sep; 25(9):2358-63. PubMed ID: 21804420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of creatine monohydrate supplementation on sprint skating in ice-hockey players.
    Cornish SM; Chilibeck PD; Burke DG
    J Sports Med Phys Fitness; 2006 Mar; 46(1):90-8. PubMed ID: 16596105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ice hockey skating sprints: run to glide mechanics of high calibre male and female athletes.
    Budarick AR; Shell JR; Robbins SMK; Wu T; Renaud PJ; Pearsall DJ
    Sports Biomech; 2020 Oct; 19(5):601-617. PubMed ID: 30200818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skating crossovers on a motorized flywheel: a preliminary experimental design to test effect on speed and on crossovers.
    Smith AM; Krause DA; Stuart MJ; Montelpare WJ; Sorenson MC; Link AA; Gaz DV; Twardowski CP; Larson DR; Stuart MB
    J Strength Cond Res; 2013 Dec; 27(12):3412-8. PubMed ID: 23539081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical determinants of forward skating sprint inferred from off- and on-ice force-velocity evaluations in elite female ice hockey players.
    Perez J; Guilhem G; Hager R; Brocherie F
    Eur J Sport Sci; 2021 Feb; 21(2):192-203. PubMed ID: 32241241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship between body composition and preseason performance tests of collegiate male lacrosse players.
    Collins SM; Silberlicht M; Perzinski C; Smith SP; Davidson PW
    J Strength Cond Res; 2014 Sep; 28(9):2673-9. PubMed ID: 24626136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.