These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 20543825)

  • 41. Heterosynaptic metaplastic regulation of synaptic efficacy in CA1 pyramidal neurons of rat hippocampus.
    Le Ray D; Fernández De Sevilla D; Belén Porto A; Fuenzalida M; Buño W
    Hippocampus; 2004; 14(8):1011-25. PubMed ID: 15390171
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Robustness to Axon Initial Segment Variation Is Explained by Somatodendritic Excitability in Rat Substantia Nigra Dopaminergic Neurons.
    Moubarak E; Engel D; Dufour MA; Tapia M; Tell F; Goaillard JM
    J Neurosci; 2019 Jun; 39(26):5044-5063. PubMed ID: 31028116
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The axon initial segment in nervous system disease and injury.
    Buffington SA; Rasband MN
    Eur J Neurosci; 2011 Nov; 34(10):1609-19. PubMed ID: 22103418
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Afferent influences on brainstem auditory nuclei of the chick: nucleus magnocellularis neuronal activity following cochlea removal.
    Born DE; Durham D; Rubel EW
    Brain Res; 1991 Aug; 557(1-2):37-47. PubMed ID: 1747768
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Axon initial segment plasticity accompanies enhanced excitation of visual cortical neurons in aged rats.
    Ding Y; Chen T; Wang Q; Yuan Y; Hua T
    Neuroreport; 2018 Dec; 29(18):1537-1543. PubMed ID: 30320703
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A simulation of action potentials in synaptic boutons during presynaptic inhibition.
    Graham B; Redman S
    J Neurophysiol; 1994 Feb; 71(2):538-49. PubMed ID: 8176423
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The afferent signaling complex: Regulation of type I spiral ganglion neuron responses in the auditory periphery.
    Reijntjes DOJ; Pyott SJ
    Hear Res; 2016 Jun; 336():1-16. PubMed ID: 27018296
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Presynaptic rat Kv1.2 channels suppress synaptic terminal hyperexcitability following action potential invasion.
    Dodson PD; Billups B; Rusznák Z; Szûcs G; Barker MC; Forsythe ID
    J Physiol; 2003 Jul; 550(Pt 1):27-33. PubMed ID: 12777451
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Short-Term Depression of Axonal Spikes at the Mouse Hippocampal Mossy Fibers and Sodium Channel-Dependent Modulation.
    Ohura S; Kamiya H
    eNeuro; 2018; 5(1):. PubMed ID: 29468192
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Autonomous initiation and propagation of action potentials in neurons of the subthalamic nucleus.
    Atherton JF; Wokosin DL; Ramanathan S; Bevan MD
    J Physiol; 2008 Dec; 586(23):5679-700. PubMed ID: 18832425
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Alterations in intrinsic membrane properties and the axon initial segment in a mouse model of Angelman syndrome.
    Kaphzan H; Buffington SA; Jung JI; Rasband MN; Klann E
    J Neurosci; 2011 Nov; 31(48):17637-48. PubMed ID: 22131424
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Activity-dependent formation and location of voltage-gated sodium channel clusters at a CNS nerve terminal during postnatal development.
    Xu J; Berret E; Kim JH
    J Neurophysiol; 2017 Feb; 117(2):582-593. PubMed ID: 27832602
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Short- and long-term plasticity at the axon initial segment.
    Grubb MS; Shu Y; Kuba H; Rasband MN; Wimmer VC; Bender KJ
    J Neurosci; 2011 Nov; 31(45):16049-55. PubMed ID: 22072655
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Homeostatic Plasticity of Subcellular Neuronal Structures: From Inputs to Outputs.
    Wefelmeyer W; Puhl CJ; Burrone J
    Trends Neurosci; 2016 Oct; 39(10):656-667. PubMed ID: 27637565
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sensory input drives rapid homeostatic scaling of the axon initial segment in mouse barrel cortex.
    Jamann N; Dannehl D; Lehmann N; Wagener R; Thielemann C; Schultz C; Staiger J; Kole MHP; Engelhardt M
    Nat Commun; 2021 Jan; 12(1):23. PubMed ID: 33397944
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neuronal signaling in central nervous system.
    Shu Y
    Sheng Li Xue Bao; 2011 Feb; 63(1):1-8. PubMed ID: 21340428
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Superresolution imaging reveals activity-dependent plasticity of axon morphology linked to changes in action potential conduction velocity.
    Chéreau R; Saraceno GE; Angibaud J; Cattaert D; Nägerl UV
    Proc Natl Acad Sci U S A; 2017 Feb; 114(6):1401-1406. PubMed ID: 28115721
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sensory deprivation regulates the development of the hyperpolarization-activated current in auditory brainstem neurons.
    Hassfurth B; Magnusson AK; Grothe B; Koch U
    Eur J Neurosci; 2009 Oct; 30(7):1227-38. PubMed ID: 19788576
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Input-Output Relation of Primary Nociceptive Neurons is Determined by the Morphology of the Peripheral Nociceptive Terminals.
    Barkai O; Butterman R; Katz B; Lev S; Binshtok AM
    J Neurosci; 2020 Dec; 40(49):9346-9363. PubMed ID: 33115929
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Na+ imaging reveals little difference in action potential-evoked Na+ influx between axon and soma.
    Fleidervish IA; Lasser-Ross N; Gutnick MJ; Ross WN
    Nat Neurosci; 2010 Jul; 13(7):852-60. PubMed ID: 20543843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.