These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 20544023)

  • 1. Rearrangement of retinogeniculate projection patterns after eye-specific segregation in mice.
    Hayakawa I; Kawasaki H
    PLoS One; 2010 Jun; 5(6):e11001. PubMed ID: 20544023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eye-specific retinogeniculate segregation proceeds normally following disruption of patterned spontaneous retinal activity.
    Speer CM; Sun C; Liets LC; Stafford BK; Chapman B; Cheng HJ
    Neural Dev; 2014 Nov; 9():25. PubMed ID: 25377639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nogo-A deletion increases the plasticity of the optokinetic response and changes retinal projection organization in the adult mouse visual system.
    Guzik-Kornacka A; van der Bourg A; Vajda F; Joly S; Christ F; Schwab ME; Pernet V
    Brain Struct Funct; 2016 Jan; 221(1):317-29. PubMed ID: 25284126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse.
    Godement P; Salaün J; Imbert M
    J Comp Neurol; 1984 Dec; 230(4):552-75. PubMed ID: 6520251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional composition of the developing retinogeniculate pathway in the mouse.
    Jaubert-Miazza L; Green E; Lo FS; Bui K; Mills J; Guido W
    Vis Neurosci; 2005; 22(5):661-76. PubMed ID: 16332277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prenatal development of retinogeniculate axons in the macaque monkey during segregation of binocular inputs.
    Snider CJ; Dehay C; Berland M; Kennedy H; Chalupa LM
    J Neurosci; 1999 Jan; 19(1):220-8. PubMed ID: 9870952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Physiological and anatomical study of the retinogeniculate projections in the mouse].
    Métin C; Godement P; Saillour P; Imbert M
    C R Seances Acad Sci III; 1983 Jan; 296(3):157-62. PubMed ID: 6404518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switching retinogeniculate axon laterality leads to normal targeting but abnormal eye-specific segregation that is activity dependent.
    Rebsam A; Petros TJ; Mason CA
    J Neurosci; 2009 Nov; 29(47):14855-63. PubMed ID: 19940181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organization of retinogeniculate projections in turtles of the genera Pseudemys and Chrysemys.
    Ulinski PS; Nautiyal J
    J Comp Neurol; 1988 Oct; 276(1):92-112. PubMed ID: 3192765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phr1 regulates retinogeniculate targeting independent of activity and ephrin-A signalling.
    Culican SM; Bloom AJ; Weiner JA; DiAntonio A
    Mol Cell Neurosci; 2009 Jul; 41(3):304-12. PubMed ID: 19371781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 'Hidden lamination' in the dorsal lateral geniculate nucleus: the functional organization of this thalamic region in the rat.
    Reese BE
    Brain Res; 1988; 472(2):119-37. PubMed ID: 3289687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absence of plateau potentials in dLGN cells leads to a breakdown in retinogeniculate refinement.
    Dilger EK; Krahe TE; Morhardt DR; Seabrook TA; Shin HS; Guido W
    J Neurosci; 2015 Feb; 35(8):3652-62. PubMed ID: 25716863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Failure to maintain eye-specific segregation in nob, a mutant with abnormally patterned retinal activity.
    Demas J; Sagdullaev BT; Green E; Jaubert-Miazza L; McCall MA; Gregg RG; Wong RO; Guido W
    Neuron; 2006 Apr; 50(2):247-59. PubMed ID: 16630836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unbiased analysis of bulk axonal segregation patterns.
    Torborg CL; Feller MB
    J Neurosci Methods; 2004 May; 135(1-2):17-26. PubMed ID: 15020085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of spontaneous retinal activity before eye opening in the maturation of form and function in the retinogeniculate pathway of the ferret.
    Cook PM; Prusky G; Ramoa AS
    Vis Neurosci; 1999; 16(3):491-501. PubMed ID: 10349970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomical origins of ocular dominance in mouse primary visual cortex.
    Coleman JE; Law K; Bear MF
    Neuroscience; 2009 Jun; 161(2):561-71. PubMed ID: 19327388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The normal and abnormal postnatal development of retinogeniculate projections in golden hamsters: an anterograde horseradish peroxidase tracing study.
    So KF; Woo HH; Jen LS
    Brain Res; 1984 Feb; 314(2):191-205. PubMed ID: 6704748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The topography of expanded uncrossed retinal projections following neonatal enucleation of one eye: differing effects in dorsal lateral geniculate nucleus and superior colliculus.
    Reese BE
    J Comp Neurol; 1986 Aug; 250(1):8-32. PubMed ID: 3016037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired clustered protocadherin-α leads to aggregated retinogeniculate terminals and impaired visual acuity in mice.
    Meguro R; Hishida R; Tsukano H; Yoshitake K; Imamura R; Tohmi M; Kitsukawa T; Hirabayashi T; Yagi T; Takebayashi H; Shibuki K
    J Neurochem; 2015 Apr; 133(1):66-72. PubMed ID: 25650227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abnormal development of the retinogeniculate projection in Siamese cats.
    Kliot M; Shatz CJ
    J Neurosci; 1985 Oct; 5(10):2641-53. PubMed ID: 2995604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.