BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 20544180)

  • 1. On-chip photoactivation of heterologously expressed rhodopsin allows kinetic analysis of G-protein signaling by surface plasmon resonance spectroscopy.
    Komolov KE; Aguilà M; Toledo D; Manyosa J; Garriga P; Koch KW
    Anal Bioanal Chem; 2010 Aug; 397(7):2967-76. PubMed ID: 20544180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of surface plasmon resonance spectroscopy to study G-protein coupled receptor signalling.
    Komolov KE; Koch KW
    Methods Mol Biol; 2010; 627():249-60. PubMed ID: 20217627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring rhodopsin-G-protein interactions by surface plasmon resonance.
    Northup J
    Methods Mol Biol; 2004; 261():93-112. PubMed ID: 15064451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface plasmon resonance study of g protein/receptor coupling in a lipid bilayer-free system.
    Komolov KE; Senin II; Philippov PP; Koch KW
    Anal Chem; 2006 Feb; 78(4):1228-34. PubMed ID: 16478116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow-mediated on-surface reconstitution of G-protein coupled receptors for applications in surface plasmon resonance biosensors.
    Karlsson OP; Löfås S
    Anal Biochem; 2002 Jan; 300(2):132-8. PubMed ID: 11779103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micropatterned immobilization of a G protein-coupled receptor and direct detection of G protein activation.
    Bieri C; Ernst OP; Heyse S; Hofmann KP; Vogel H
    Nat Biotechnol; 1999 Nov; 17(11):1105-8. PubMed ID: 10545918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporation of rhodopsin in laterally structured supported membranes: observation of transducin activation with spatially and time-resolved surface plasmon resonance.
    Heyse S; Ernst OP; Dienes Z; Hofmann KP; Vogel H
    Biochemistry; 1998 Jan; 37(2):507-22. PubMed ID: 9425071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-driven activation of beta 2-adrenergic receptor signaling by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops.
    Kim JM; Hwa J; Garriga P; Reeves PJ; RajBhandary UL; Khorana HG
    Biochemistry; 2005 Feb; 44(7):2284-92. PubMed ID: 15709741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidating kinetic and thermodynamic constants for interaction of G protein subunits and receptors by surface plasmon resonance spectroscopy.
    Rebois RV; Schuck P; Northup JK
    Methods Enzymol; 2002; 344():15-42. PubMed ID: 11771379
    [No Abstract]   [Full Text] [Related]  

  • 10. Development of surface-based assays for transmembrane proteins: selective immobilization of functional CCR5, a G protein-coupled receptor.
    Silin VI; Karlik EA; Ridge KD; Vanderah DJ
    Anal Biochem; 2006 Feb; 349(2):247-53. PubMed ID: 16298323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Independent and synergistic interaction of retinal G-protein subunits with bovine rhodopsin measured by surface plasmon resonance.
    Clark WA; Jian X; Chen L; Northup JK
    Biochem J; 2001 Sep; 358(Pt 2):389-97. PubMed ID: 11513737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Receptor-dependent G-protein activation in lipidic cubic phase.
    Navarro J; Landau EM; Fahmy K
    Biopolymers; 2002; 67(3):167-77. PubMed ID: 11979595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of rhodopsin: a G-protein-coupled receptor.
    Stenkamp RE; Teller DC; Palczewski K
    Chembiochem; 2002 Oct; 3(10):963-7. PubMed ID: 12362360
    [No Abstract]   [Full Text] [Related]  

  • 14. Immobilization of native membrane-bound rhodopsin on biosensor surfaces.
    Minic J; Grosclaude J; Aioun J; Persuy MA; Gorojankina T; Salesse R; Pajot-Augy E; Hou Y; Helali S; Jaffrezic-Renault N; Bessueille F; Errachid A; Gomila G; Ruiz O; Samitier J
    Biochim Biophys Acta; 2005 Aug; 1724(3):324-32. PubMed ID: 15927400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-based biophysical analysis of the interaction of rhodopsin with G protein and arrestin.
    Sommer ME; Elgeti M; Hildebrand PW; Szczepek M; Hofmann KP; Scheerer P
    Methods Enzymol; 2015; 556():563-608. PubMed ID: 25857800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrational resonance, allostery, and activation in rhodopsin-like G protein-coupled receptors.
    Woods KN; Pfeffer J; Dutta A; Klein-Seetharaman J
    Sci Rep; 2016 Nov; 6():37290. PubMed ID: 27849063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved conformational stability of the visual G protein-coupled receptor rhodopsin by specific interaction with docosahexaenoic acid phospholipid.
    Sánchez-Martín MJ; Ramon E; Torrent-Burgués J; Garriga P
    Chembiochem; 2013 Mar; 14(5):639-44. PubMed ID: 23447332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and spectroscopic characterization of photo-affinity peptide ligands to study rhodopsin-G protein interaction.
    Chen Y; Herrmann R; Fishkin N; Henklein P; Nakanishi K; Ernst OP
    Photochem Photobiol; 2008; 84(4):831-8. PubMed ID: 18282180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible immobilization of proteins with streptavidin affinity tags on a surface plasmon resonance biosensor chip.
    Li YJ; Bi LJ; Zhang XE; Zhou YF; Zhang JB; Chen YY; Li W; Zhang ZP
    Anal Bioanal Chem; 2006 Nov; 386(5):1321-6. PubMed ID: 17006676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence analysis reveals how G protein-coupled receptors transduce the signal to the G protein.
    Oliveira L; Paiva PB; Paiva AC; Vriend G
    Proteins; 2003 Sep; 52(4):553-60. PubMed ID: 12910455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.