These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
354 related articles for article (PubMed ID: 20544340)
1. The regulation of class IA PI 3-kinases by inter-subunit interactions. Backer JM Curr Top Microbiol Immunol; 2010; 346():87-114. PubMed ID: 20544340 [TBL] [Abstract][Full Text] [Related]
2. Properties of FDA-approved small molecule phosphatidylinositol 3-kinase inhibitors prescribed for the treatment of malignancies. Roskoski R Pharmacol Res; 2021 Jun; 168():105579. PubMed ID: 33774181 [TBL] [Abstract][Full Text] [Related]
3. Positive and negative regulation of phosphoinositide 3-kinase-dependent signaling pathways by three different gene products of the p85alpha regulatory subunit. Ueki K; Algenstaedt P; Mauvais-Jarvis F; Kahn CR Mol Cell Biol; 2000 Nov; 20(21):8035-46. PubMed ID: 11027274 [TBL] [Abstract][Full Text] [Related]
4. Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers. Geering B; Cutillas PR; Nock G; Gharbi SI; Vanhaesebroeck B Proc Natl Acad Sci U S A; 2007 May; 104(19):7809-14. PubMed ID: 17470792 [TBL] [Abstract][Full Text] [Related]
5. Positive and negative roles of p85 alpha and p85 beta regulatory subunits of phosphoinositide 3-kinase in insulin signaling. Ueki K; Fruman DA; Yballe CM; Fasshauer M; Klein J; Asano T; Cantley LC; Kahn CR J Biol Chem; 2003 Nov; 278(48):48453-66. PubMed ID: 14504291 [TBL] [Abstract][Full Text] [Related]
6. Structure and function of phosphatidylinositol-3,4 kinase. Funaki M; Katagiri H; Inukai K; Kikuchi M; Asano T Cell Signal; 2000 Mar; 12(3):135-42. PubMed ID: 10704820 [TBL] [Abstract][Full Text] [Related]
7. Molecular Mechanisms of Human Disease Mediated by Oncogenic and Primary Immunodeficiency Mutations in Class IA Phosphoinositide 3-Kinases. Dornan GL; Burke JE Front Immunol; 2018; 9():575. PubMed ID: 29616047 [TBL] [Abstract][Full Text] [Related]
8. The p85 regulatory subunit controls sequential activation of phosphoinositide 3-kinase by Tyr kinases and Ras. Jimenez C; Hernandez C; Pimentel B; Carrera AC J Biol Chem; 2002 Nov; 277(44):41556-62. PubMed ID: 12196526 [TBL] [Abstract][Full Text] [Related]
9. p85alpha gene generates three isoforms of regulatory subunit for phosphatidylinositol 3-kinase (PI 3-Kinase), p50alpha, p55alpha, and p85alpha, with different PI 3-kinase activity elevating responses to insulin. Inukai K; Funaki M; Ogihara T; Katagiri H; Kanda A; Anai M; Fukushima Y; Hosaka T; Suzuki M; Shin BC; Takata K; Yazaki Y; Kikuchi M; Oka Y; Asano T J Biol Chem; 1997 Mar; 272(12):7873-82. PubMed ID: 9065454 [TBL] [Abstract][Full Text] [Related]
10. Synergistic activation of a family of phosphoinositide 3-kinase via G-protein coupled and tyrosine kinase-related receptors. Katada T; Kurosu H; Okada T; Suzuki T; Tsujimoto N; Takasuga S; Kontani K; Hazeki O; Ui M Chem Phys Lipids; 1999 Apr; 98(1-2):79-86. PubMed ID: 10358930 [TBL] [Abstract][Full Text] [Related]
11. Role of phosphoinositide 3-kinase regulatory isoforms in development and actin rearrangement. Brachmann SM; Yballe CM; Innocenti M; Deane JA; Fruman DA; Thomas SM; Cantley LC Mol Cell Biol; 2005 Apr; 25(7):2593-606. PubMed ID: 15767666 [TBL] [Abstract][Full Text] [Related]
12. Direct interaction of major histocompatibility complex class II-derived peptides with class Ia phosphoinositide 3-kinase results in dose-dependent stimulatory effects. Foukas LC; Panayotou G; Shepherd PR J Biol Chem; 2004 Feb; 279(9):7505-11. PubMed ID: 14660637 [TBL] [Abstract][Full Text] [Related]
13. Defining How Oncogenic and Developmental Mutations of PIK3R1 Alter the Regulation of Class IA Phosphoinositide 3-Kinases. Dornan GL; Stariha JTB; Rathinaswamy MK; Powell CJ; Boulanger MJ; Burke JE Structure; 2020 Feb; 28(2):145-156.e5. PubMed ID: 31831213 [TBL] [Abstract][Full Text] [Related]
15. SH3 domain of the phosphatidylinositol 3-kinase regulatory subunit is responsible for the formation of a sequestration complex with insulin receptor substrate-1. Ikegami Y; Inukai K; Awata T; Asano T; Katayama S Biochem Biophys Res Commun; 2008 Jan; 365(3):433-8. PubMed ID: 17991427 [TBL] [Abstract][Full Text] [Related]
16. Regulation of class IA PI3Ks. Wu H; Yan Y; Backer JM Biochem Soc Trans; 2007 Apr; 35(Pt 2):242-4. PubMed ID: 17371249 [TBL] [Abstract][Full Text] [Related]
17. Somatic mutations in p85alpha promote tumorigenesis through class IA PI3K activation. Jaiswal BS; Janakiraman V; Kljavin NM; Chaudhuri S; Stern HM; Wang W; Kan Z; Dbouk HA; Peters BA; Waring P; Dela Vega T; Kenski DM; Bowman KK; Lorenzo M; Li H; Wu J; Modrusan Z; Stinson J; Eby M; Yue P; Kaminker JS; de Sauvage FJ; Backer JM; Seshagiri S Cancer Cell; 2009 Dec; 16(6):463-74. PubMed ID: 19962665 [TBL] [Abstract][Full Text] [Related]
18. Optimal chemotactic responses of leukemic T cells to stromal cell-derived factor-1 requires the activation of both class IA and IB phosphoinositide 3-kinases. Curnock AP; Sotsios Y; Wright KL; Ward SG J Immunol; 2003 Apr; 170(8):4021-30. PubMed ID: 12682230 [TBL] [Abstract][Full Text] [Related]
19. Regulatory subunits of class IA PI3K. Fruman DA Curr Top Microbiol Immunol; 2010; 346():225-44. PubMed ID: 20563711 [TBL] [Abstract][Full Text] [Related]
20. N-terminal domains of the class ia phosphoinositide 3-kinase regulatory subunit play a role in cytoskeletal but not mitogenic signaling. Hill KM; Huang Y; Yip SC; Yu J; Segall JE; Backer JM J Biol Chem; 2001 May; 276(19):16374-8. PubMed ID: 11278326 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]