BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 20544553)

  • 1. Prediction of skin sensitization potential using D-optimal design and GA-kNN classification methods.
    Gunturi SB; Theerthala SS; Patel NK; Bahl J; Narayanan R
    SAR QSAR Environ Res; 2010 Apr; 21(3-4):305-35. PubMed ID: 20544553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico ADME modelling 2: computational models to predict human serum albumin binding affinity using ant colony systems.
    Gunturi SB; Narayanan R; Khandelwal A
    Bioorg Med Chem; 2006 Jun; 14(12):4118-29. PubMed ID: 16504519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of diverse organic compounds that induce chromosomal aberrations in Chinese hamster cells.
    McElroy NR; Thompson ED; Jurs PC
    J Chem Inf Comput Sci; 2003; 43(6):2111-9. PubMed ID: 14632463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benchmarking of linear and nonlinear approaches for quantitative structure-property relationship studies of metal complexation with ionophores.
    Tetko IV; Solov'ev VP; Antonov AV; Yao X; Doucet JP; Fan B; Hoonakker F; Fourches D; Jost P; Lachiche N; Varnek A
    J Chem Inf Model; 2006; 46(2):808-19. PubMed ID: 16563012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical external validation and consensus modeling: a QSPR case study for Koc prediction.
    Gramatica P; Giani E; Papa E
    J Mol Graph Model; 2007 Mar; 25(6):755-66. PubMed ID: 16890002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction models of human plasma protein binding rate and oral bioavailability derived by using GA-CG-SVM method.
    Ma CY; Yang SY; Zhang H; Xiang ML; Huang Q; Wei YQ
    J Pharm Biomed Anal; 2008 Aug; 47(4-5):677-82. PubMed ID: 18455346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative structure-pharmacokinetic relationships for drug clearance by using statistical learning methods.
    Yap CW; Li ZR; Chen YZ
    J Mol Graph Model; 2006 Mar; 24(5):383-95. PubMed ID: 16290201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of quantitative structure-activity relationships and classification models for anticonvulsant activity of hydantoin analogues.
    Sutherland JJ; Weaver DF
    J Chem Inf Comput Sci; 2003; 43(3):1028-36. PubMed ID: 12767162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of predictive QSAR models to database mining: identification and experimental validation of novel anticonvulsant compounds.
    Shen M; Béguin C; Golbraikh A; Stables JP; Kohn H; Tropsha A
    J Med Chem; 2004 Apr; 47(9):2356-64. PubMed ID: 15084134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combinatorial QSAR modeling of P-glycoprotein substrates.
    de Cerqueira Lima P; Golbraikh A; Oloff S; Xiao Y; Tropsha A
    J Chem Inf Model; 2006; 46(3):1245-54. PubMed ID: 16711744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melting point prediction employing k-nearest neighbor algorithms and genetic parameter optimization.
    Nigsch F; Bender A; van Buuren B; Tissen J; Nigsch E; Mitchell JB
    J Chem Inf Model; 2006; 46(6):2412-22. PubMed ID: 17125183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binary classification of chalcone derivatives with LDA or KNN based on their antileishmanial activity and molecular descriptors selected using the Successive Projections Algorithm feature-selection technique.
    Goodarzi M; Saeys W; de Araujo MC; Galvão RK; Vander Heyden Y
    Eur J Pharm Sci; 2014 Jan; 51():189-95. PubMed ID: 24090733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. kappa Nearest neighbors QSAR modeling as a variational problem: theory and applications.
    Itskowitz P; Tropsha A
    J Chem Inf Model; 2005; 45(3):777-85. PubMed ID: 15921467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-based classification of active and inactive estrogenic compounds by decision tree, LVQ and kNN methods.
    Asikainen A; Kolehmainen M; Ruuskanen J; Tuppurainen K
    Chemosphere; 2006 Jan; 62(4):658-73. PubMed ID: 15992856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative structure-activity relationship modeling of dopamine D(1) antagonists using comparative molecular field analysis, genetic algorithms-partial least-squares, and K nearest neighbor methods.
    Hoffman B; Cho SJ; Zheng W; Wyrick S; Nichols DE; Mailman RB; Tropsha A
    J Med Chem; 1999 Aug; 42(17):3217-26. PubMed ID: 10464009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QSAR and classification of murine and human soluble epoxide hydrolase inhibition by urea-like compounds.
    McElroy NR; Jurs PC; Morisseau C; Hammock BD
    J Med Chem; 2003 Mar; 46(6):1066-80. PubMed ID: 12620084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local and global quantitative structure-activity relationship modeling and prediction for the baseline toxicity.
    Yuan H; Wang Y; Cheng Y
    J Chem Inf Model; 2007; 47(1):159-69. PubMed ID: 17238261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantitative structure property relationship for prediction of solubilization of hazardous compounds using GA-based MLR in CTAB micellar media.
    Ghasemi JB; Abdolmaleki A; Mandoumi N
    J Hazard Mater; 2009 Jan; 161(1):74-80. PubMed ID: 18456399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of chemical carcinogenicity by machine learning approaches.
    Tan NX; Rao HB; Li ZR; Li XY
    SAR QSAR Environ Res; 2009; 20(1-2):27-75. PubMed ID: 19343583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validated QSAR prediction of OH tropospheric degradation of VOCs: splitting into training-test sets and consensus modeling.
    Gramatica P; Pilutti P; Papa E
    J Chem Inf Comput Sci; 2004; 44(5):1794-802. PubMed ID: 15446838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.