BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 20544787)

  • 1. Photocatalytic hydrogen evolution by [FeFe] hydrogenase mimics in homogeneous solution.
    Wang WG; Wang F; Wang HY; Si G; Tung CH; Wu LZ
    Chem Asian J; 2010 Aug; 5(8):1796-803. PubMed ID: 20544787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photocatalytic hydrogen evolution from rhenium(I) complexes to [FeFe] hydrogenase mimics in aqueous SDS micellar systems: a biomimetic pathway.
    Wang HY; Wang WG; Si G; Wang F; Tung CH; Wu LZ
    Langmuir; 2010 Jun; 26(12):9766-71. PubMed ID: 20469832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A triad [FeFe] hydrogenase system for light-driven hydrogen evolution.
    Wang HY; Si G; Cao WN; Wang WG; Li ZJ; Wang F; Tung CH; Wu LZ
    Chem Commun (Camb); 2011 Aug; 47(29):8406-8. PubMed ID: 21701763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient [FeFe] hydrogenase mimic dyads covalently linking to iridium photosensitizer for photocatalytic hydrogen evolution.
    Cui HH; Hu MQ; Wen HM; Chai GL; Ma CB; Chen H; Chen CN
    Dalton Trans; 2012 Dec; 41(45):13899-907. PubMed ID: 23023604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron transfer and hydrogen generation from a molecular dyad: platinum(II) alkynyl complex anchored to [FeFe] hydrogenase subsite mimic.
    Wang WG; Wang F; Wang HY; Tung CH; Wu LZ
    Dalton Trans; 2012 Feb; 41(8):2420-6. PubMed ID: 22218815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approaches to efficient molecular catalyst systems for photochemical H2 production using [FeFe]-hydrogenase active site mimics.
    Wang M; Chen L; Li X; Sun L
    Dalton Trans; 2011 Dec; 40(48):12793-800. PubMed ID: 21983599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoinduced hydrogen evolution in supramolecular devices with a rhenium photosensitizer linked to FeFe-hydrogenase model complexes.
    Liu J; Jiang W
    Dalton Trans; 2012 Aug; 41(32):9700-7. PubMed ID: 22786574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast photodriven intramolecular electron transfer from a zinc porphyrin to a readily reduced diiron hydrogenase model complex.
    Samuel AP; Co DT; Stern CL; Wasielewski MR
    J Am Chem Soc; 2010 Jul; 132(26):8813-5. PubMed ID: 20536125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photo-induced hydrogen production in a helical peptide incorporating a [FeFe] hydrogenase active site mimic.
    Roy A; Madden C; Ghirlanda G
    Chem Commun (Camb); 2012 Oct; 48(79):9816-8. PubMed ID: 22895256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic assembly of the [FeFe] hydrogenase: synthetic mimics in a biological shell.
    Apfel UP; Weigand W
    Chembiochem; 2013 Nov; 14(17):2237-8. PubMed ID: 24115635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic mechanism of Fe-only hydrogenase: density functional study on H-H making/breaking at the diiron cluster with concerted proton and electron transfers.
    Zhou T; Mo Y; Liu A; Zhou Z; Tsai KR
    Inorg Chem; 2004 Feb; 43(3):923-30. PubMed ID: 14753812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hybrid photocatalytic system comprising ZnS as light harvester and an [Fe(2)S(2)] hydrogenase mimic as hydrogen evolution catalyst.
    Wen F; Wang X; Huang L; Ma G; Yang J; Li C
    ChemSusChem; 2012 May; 5(5):849-53. PubMed ID: 22539196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exceptional poly(acrylic acid)-based artificial [FeFe]-hydrogenases for photocatalytic H2 production in water.
    Wang F; Liang WJ; Jian JX; Li CB; Chen B; Tung CH; Wu LZ
    Angew Chem Int Ed Engl; 2013 Jul; 52(31):8134-8. PubMed ID: 23788433
    [No Abstract]   [Full Text] [Related]  

  • 14. Wiring an [FeFe]-hydrogenase with photosystem I for light-induced hydrogen production.
    Lubner CE; Knörzer P; Silva PJ; Vincent KA; Happe T; Bryant DA; Golbeck JH
    Biochemistry; 2010 Dec; 49(48):10264-6. PubMed ID: 21058656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogenases and H(+)-reduction in primary energy conservation.
    Vignais PM
    Results Probl Cell Differ; 2008; 45():223-52. PubMed ID: 18500479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density functional study on dihydrogen activation at the H cluster in Fe-only hydrogenases.
    Zhou T; Mo Y; Zhou Z; Tsai K
    Inorg Chem; 2005 Jul; 44(14):4941-6. PubMed ID: 15998021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-resolved vibrational spectroscopy of [FeFe]-hydrogenase model compounds.
    Bingaman JL; Kohnhorst CL; Van Meter GA; McElroy BA; Rakowski EA; Caplins BW; Gutowski TA; Stromberg CJ; Webster CE; Heilweil EJ
    J Phys Chem A; 2012 Jul; 116(27):7261-71. PubMed ID: 22612846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, structures and electrochemistry studies of 2Fe2S-Fe(ii)(S-2N)(2) models for H-cluster of [FeFe]-hydrogenase.
    Hu MQ; Wen HM; Ma CB; Li N; Yan QY; Chen H; Chen CN
    Dalton Trans; 2010 Oct; 39(40):9484-6. PubMed ID: 20830399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogenase/ferredoxin charge-transfer complexes: effect of hydrogenase mutations on the complex association.
    Long H; King PW; Ghirardi ML; Kim K
    J Phys Chem A; 2009 Apr; 113(16):4060-7. PubMed ID: 19317477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chitosan confinement enhances hydrogen photogeneration from a mimic of the diiron subsite of [FeFe]-hydrogenase.
    Jian JX; Liu Q; Li ZJ; Wang F; Li XB; Li CB; Liu B; Meng QY; Chen B; Feng K; Tung CH; Wu LZ
    Nat Commun; 2013; 4():2695. PubMed ID: 24158139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.