These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 20544787)

  • 61. Ligand versus metal protonation of an iron hydrogenase active site mimic.
    Eilers G; Schwartz L; Stein M; Zampella G; de Gioia L; Ott S; Lomoth R
    Chemistry; 2007; 13(25):7075-84. PubMed ID: 17566128
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Diiron dithiolate complexes containing intra-ligand NH ... S hydrogen bonds: [FeFe] hydrogenase active site models for the electrochemical proton reduction of HOAc with low overpotential.
    Yu Z; Wang M; Li P; Dong W; Wang F; Sun L
    Dalton Trans; 2008 May; (18):2400-6. PubMed ID: 18461194
    [TBL] [Abstract][Full Text] [Related]  

  • 63. H2 binding and splitting on a new-generation [FeFe]-hydrogenase model featuring a redox-active decamethylferrocenyl phosphine ligand: a theoretical investigation.
    Greco C
    Inorg Chem; 2013 Feb; 52(4):1901-8. PubMed ID: 23374093
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Mechanism of H2 production by the [FeFe]H subcluster of di-iron hydrogenases: implications for abiotic catalysts.
    Sbraccia C; Zipoli F; Car R; Cohen MH; Dismukes GC; Selloni A
    J Phys Chem B; 2008 Oct; 112(42):13381-90. PubMed ID: 18826265
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A model of the [FeFe] hydrogenase active site with a biologically relevant azadithiolate bridge: a spectroscopic and theoretical investigation.
    Erdem OF; Schwartz L; Stein M; Silakov A; Kaur-Ghumaan S; Huang P; Ott S; Reijerse EJ; Lubitz W
    Angew Chem Int Ed Engl; 2011 Feb; 50(6):1439-43. PubMed ID: 21290530
    [No Abstract]   [Full Text] [Related]  

  • 66. Computational studies of [NiFe] and [FeFe] hydrogenases.
    Siegbahn PE; Tye JW; Hall MB
    Chem Rev; 2007 Oct; 107(10):4414-35. PubMed ID: 17927160
    [No Abstract]   [Full Text] [Related]  

  • 67. A theoretical study on the enhancement of functionally relevant electron transfers in biomimetic models of [FeFe]-hydrogenases.
    Greco C; De Gioia L
    Inorg Chem; 2011 Aug; 50(15):6987-95. PubMed ID: 21728321
    [TBL] [Abstract][Full Text] [Related]  

  • 68. One- to two-electron reduction of an [FeFe]-hydrogenase active site mimic: the critical role of fluxionality of the [2Fe2S] core.
    Felton GA; Petro BJ; Glass RS; Lichtenberger DL; Evans DH
    J Am Chem Soc; 2009 Aug; 131(32):11290-1. PubMed ID: 19630410
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Cell-free synthesis and maturation of [FeFe] hydrogenases.
    Boyer ME; Stapleton JA; Kuchenreuther JM; Wang CW; Swartz JR
    Biotechnol Bioeng; 2008 Jan; 99(1):59-67. PubMed ID: 17546685
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Photocatalytic hydrogen production using models of the iron-iron hydrogenase active site dispersed in micellar solution.
    Orain C; Quentel F; Gloaguen F
    ChemSusChem; 2014 Feb; 7(2):638-43. PubMed ID: 24127363
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Hydrogen generation from weak acids: electrochemical and computational studies of a diiron hydrogenase mimic.
    Felton GA; Vannucci AK; Chen J; Lockett LT; Okumura N; Petro BJ; Zakai UI; Evans DH; Glass RS; Lichtenberger DL
    J Am Chem Soc; 2007 Oct; 129(41):12521-30. PubMed ID: 17894491
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Influence of an electron-deficient bridging o-carborane on the electronic properties of an [FeFe] hydrogenase active site model.
    Schwartz L; Eriksson L; Lomoth R; Teixidor F; Viñas C; Ott S
    Dalton Trans; 2008 May; (18):2379-81. PubMed ID: 18461189
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Electron transfer kinetics in CdS nanorod-[FeFe]-hydrogenase complexes and implications for photochemical H₂ generation.
    Wilker MB; Shinopoulos KE; Brown KA; Mulder DW; King PW; Dukovic G
    J Am Chem Soc; 2014 Mar; 136(11):4316-24. PubMed ID: 24564271
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [FeFe]-Hydrogenases: recent developments and future perspectives.
    Wittkamp F; Senger M; Stripp ST; Apfel UP
    Chem Commun (Camb); 2018 Jun; 54(47):5934-5942. PubMed ID: 29726568
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Functionally relevant interplay between the Fe(4)S(4) cluster and CN(-) ligands in the active site of [FeFe]-hydrogenases.
    Bruschi M; Greco C; Bertini L; Fantucci P; Ryde U; De Gioia L
    J Am Chem Soc; 2010 Apr; 132(14):4992-3. PubMed ID: 20302340
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Synthetic chemistry: making a natural fuel cell.
    Darensbourg MY
    Nature; 2005 Feb; 433(7026):589-91. PubMed ID: 15703733
    [No Abstract]   [Full Text] [Related]  

  • 77. Exceptional dendrimer-based mimics of diiron hydrogenase for the photochemical production of hydrogen.
    Yu T; Zeng Y; Chen J; Li YY; Yang G; Li Y
    Angew Chem Int Ed Engl; 2013 May; 52(21):5631-5. PubMed ID: 23589161
    [No Abstract]   [Full Text] [Related]  

  • 78. Multiple-timescale photoreactivity of a model compound related to the active site of [FeFe]-hydrogenase.
    Ridley AR; Stewart AI; Adamczyk K; Ghosh HN; Kerkeni B; Guo ZX; Nibbering ET; Pickett CJ; Hunt NT
    Inorg Chem; 2008 Sep; 47(17):7453-5. PubMed ID: 18665586
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Enhanced photocatalytic hydrogen production from an MCM-41-immobilized photosensitizer-[Fe-Fe] hydrogenase mimic dyad.
    Wang W; Yu T; Zeng Y; Chen J; Yang G; Li Y
    Photochem Photobiol Sci; 2014 Nov; 13(11):1590-7. PubMed ID: 25238441
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Isocyanide in biochemistry? A theoretical investigation of the electronic effects and energetics of cyanide ligand protonation in [FeFe]-hydrogenases.
    Greco C; Bruschi M; Fantucci P; Ryde U; De Gioia L
    Chemistry; 2011 Feb; 17(6):1954-65. PubMed ID: 21274947
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.