These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 20544957)
21. Modern homology modeling of G-protein coupled receptors: which structural template to use? Mobarec JC; Sanchez R; Filizola M J Med Chem; 2009 Aug; 52(16):5207-16. PubMed ID: 19627087 [TBL] [Abstract][Full Text] [Related]
22. GPCRs through the keyhole: the role of protein flexibility in ligand binding to β-adrenoceptors. Emtage AL; Mistry SN; Fischer PM; Kellam B; Laughton CA J Biomol Struct Dyn; 2017 Sep; 35(12):2604-2619. PubMed ID: 27532213 [TBL] [Abstract][Full Text] [Related]
28. Development of 7TM receptor-ligand complex models using ligand-biased, semi-empirical helix-bundle repacking in torsion space: application to the agonist interaction of the human dopamine D2 receptor. Malo M; Persson R; Svensson P; Luthman K; Brive L J Comput Aided Mol Des; 2013 Mar; 27(3):277-91. PubMed ID: 23553533 [TBL] [Abstract][Full Text] [Related]
29. A new approach to docking in the beta 2-adrenergic receptor that exploits the domain structure of G-protein-coupled receptors. Gouldson PR; Snell CR; Reynolds CA J Med Chem; 1997 Nov; 40(24):3871-86. PubMed ID: 9397168 [TBL] [Abstract][Full Text] [Related]
30. Active state-like conformational elements in the beta2-AR and a photoactivated intermediate of rhodopsin identified by dynamic properties of GPCRs. Han DS; Wang SX; Weinstein H Biochemistry; 2008 Jul; 47(28):7317-21. PubMed ID: 18558776 [TBL] [Abstract][Full Text] [Related]
31. Stabilization of the human beta2-adrenergic receptor TM4-TM3-TM5 helix interface by mutagenesis of Glu122(3.41), a critical residue in GPCR structure. Roth CB; Hanson MA; Stevens RC J Mol Biol; 2008 Mar; 376(5):1305-19. PubMed ID: 18222471 [TBL] [Abstract][Full Text] [Related]
32. Toward the active conformations of rhodopsin and the beta2-adrenergic receptor. Gouldson PR; Kidley NJ; Bywater RP; Psaroudakis G; Brooks HD; Diaz C; Shire D; Reynolds CA Proteins; 2004 Jul; 56(1):67-84. PubMed ID: 15162487 [TBL] [Abstract][Full Text] [Related]
33. Modeling the possible conformations of the extracellular loops in G-protein-coupled receptors. Nikiforovich GV; Taylor CM; Marshall GR; Baranski TJ Proteins; 2010 Feb; 78(2):271-85. PubMed ID: 19731375 [TBL] [Abstract][Full Text] [Related]
34. Architecture of P2Y nucleotide receptors: structural comparison based on sequence analysis, mutagenesis, and homology modeling. Costanzi S; Mamedova L; Gao ZG; Jacobson KA J Med Chem; 2004 Oct; 47(22):5393-404. PubMed ID: 15481977 [TBL] [Abstract][Full Text] [Related]
35. Ab initio computational modeling of loops in G-protein-coupled receptors: lessons from the crystal structure of rhodopsin. Mehler EL; Hassan SA; Kortagere S; Weinstein H Proteins; 2006 Aug; 64(3):673-90. PubMed ID: 16729264 [TBL] [Abstract][Full Text] [Related]
36. Simulations of a G protein-coupled receptor homology model predict dynamic features and a ligand binding site. Wolf S; Böckmann M; Höweler U; Schlitter J; Gerwert K FEBS Lett; 2008 Oct; 582(23-24):3335-42. PubMed ID: 18775703 [TBL] [Abstract][Full Text] [Related]
37. A computational study on cannabinoid receptors and potent bioactive cannabinoid ligands: homology modeling, docking, de novo drug design and molecular dynamics analysis. Durdagi S; Papadopoulos MG; Zoumpoulakis PG; Koukoulitsa C; Mavromoustakos T Mol Divers; 2010 May; 14(2):257-76. PubMed ID: 19536636 [TBL] [Abstract][Full Text] [Related]