These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 20545048)

  • 1. From fundamentals to microbial power plants: electrochemically active biofilms. Proceedings of a workshop. November 19-21, 2008. Dourdan, France.
    Bioelectrochemistry; 2010 Apr; 78(1):1-95. PubMed ID: 20545048
    [No Abstract]   [Full Text] [Related]  

  • 2. From fundamentals to microbial power plants: electrochemically active biofilms.
    Bergel A; Feron D; Flemming HC
    Bioelectrochemistry; 2010 Apr; 78(1):1. PubMed ID: 19926537
    [No Abstract]   [Full Text] [Related]  

  • 3. Electrochemically active microorganisms from an acid mine drainage-affected site promote cathode oxidation in microbial fuel cells.
    Rojas C; Vargas IT; Bruns MA; Regan JM
    Bioelectrochemistry; 2017 Dec; 118():139-146. PubMed ID: 28803164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and performance of anodic mixed culture biofilms in submersed microbial fuel cells.
    Saba B; Christy AD; Yu Z; Co AC; Islam R; Tuovinen OH
    Bioelectrochemistry; 2017 Feb; 113():79-84. PubMed ID: 27816024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroactive microorganisms and microbial consortia.
    Marsili E; Freguia S
    Bioelectrochemistry; 2018 Apr; 120():110-111. PubMed ID: 29241153
    [No Abstract]   [Full Text] [Related]  

  • 6. Wiring microbial biofilms to the electrode by osmium redox polymer for the performance enhancement of microbial fuel cells.
    Yuan Y; Shin H; Kang C; Kim S
    Bioelectrochemistry; 2016 Apr; 108():8-12. PubMed ID: 26599210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenges in microbial fuel cell development and operation.
    Kim BH; Chang IS; Gadd GM
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):485-94. PubMed ID: 17593364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific and efficient electrochemical selection of Geoalkalibacter subterraneus and Desulfuromonas acetoxidans in high current-producing biofilms.
    Pierra M; Carmona-Martínez AA; Trably E; Godon JJ; Bernet N
    Bioelectrochemistry; 2015 Dec; 106(Pt A):221-5. PubMed ID: 25717030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitory effect of cadmium(II) ion on anodic electrochemically active biofilms performance in bioelectrochemical systems.
    Zhang Y; Wen J; Chen X; Huang G; Xu Y; Yuan Y; Sun J; Li G; Ning XA; Lu X; Wang Y
    Chemosphere; 2018 Nov; 211():202-209. PubMed ID: 30071432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical and microbial community responses of electrochemically active biofilms to copper ions in bioelectrochemical systems.
    Zhang Y; Li G; Wen J; Xu Y; Sun J; Ning XA; Lu X; Wang Y; Yang Z; Yuan Y
    Chemosphere; 2018 Apr; 196():377-385. PubMed ID: 29316463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Marine aerobic biofilm as biocathode catalyst.
    Erable B; Vandecandelaere I; Faimali M; Delia ML; Etcheverry L; Vandamme P; Bergel A
    Bioelectrochemistry; 2010 Apr; 78(1):51-6. PubMed ID: 19643681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing single- to multi-cell level charge transport in Geobacter sulfurreducens DL-1.
    Jiang X; Hu J; Petersen ER; Fitzgerald LA; Jackan CS; Lieber AM; Ringeisen BR; Lieber CM; Biffinger JC
    Nat Commun; 2013; 4():2751. PubMed ID: 24202068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is resistance futile? Changing external resistance does not improve microbial fuel cell performance.
    Lyon DY; Buret F; Vogel TM; Monier JM
    Bioelectrochemistry; 2010 Apr; 78(1):2-7. PubMed ID: 19783225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical and microbial monitoring of multi-generational electroactive biofilms formed from mangrove sediment.
    Rivalland C; Madhkour S; Salvin P; Robert F
    Bioelectrochemistry; 2015 Dec; 106(Pt A):125-32. PubMed ID: 26055041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional analysis in microbial fuel cells: common pitfalls in global gene expression studies of microbial biofilms.
    Franks AE
    FEMS Microbiol Lett; 2010 Jun; 307(2):111-2. PubMed ID: 20455951
    [No Abstract]   [Full Text] [Related]  

  • 16. Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm.
    Yong YC; Yu YY; Zhang X; Song H
    Angew Chem Int Ed Engl; 2014 Apr; 53(17):4480-3. PubMed ID: 24644059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tropical mangrove sediments as a natural inoculum for efficient electroactive biofilms.
    Salvin P; Roos C; Robert F
    Bioresour Technol; 2012 Sep; 120():45-51. PubMed ID: 22784952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient storage of electrical charge in biofilms of Shewanella oneidensis MR-1 growing in a microbial fuel cell.
    Uría N; Muñoz Berbel X; Sánchez O; Muñoz FX; Mas J
    Environ Sci Technol; 2011 Dec; 45(23):10250-6. PubMed ID: 21981730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of electro-active biofilms.
    Erable B; Duţeanu NM; Ghangrekar MM; Dumas C; Scott K
    Biofouling; 2010 Jan; 26(1):57-71. PubMed ID: 20390557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial-enzymatic-hybrid biological fuel cell with optimized growth conditions for Shewanella oneidensis DSP-10.
    Roy JN; Luckarift HR; Sizemore SR; Farrington KE; Lau C; Johnson GR; Atanassov P
    Enzyme Microb Technol; 2013 Jul; 53(2):123-7. PubMed ID: 23769313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.