These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 20545122)

  • 21. Photoacoustic spectrometry for trace gas analysis and leak detection using different cell geometries.
    Gondal MA; Dastageer A; Shwehdi MH
    Talanta; 2004 Jan; 62(1):131-41. PubMed ID: 18969274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synergetic Resonance Matching of a Microphone and a Photoacoustic Cell.
    Sim JY; Ahn CG; Huh C; Chung KH; Jeong EJ; Kim BK
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28397761
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly Sensitive Sphere-Tube Coupled Photoacoustic Cell Suitable for Detection of a Variety of Trace Gases: NO
    Li Z; Si G; Ning Z; Liu J; Fang Y; Si B; Cheng Z; Yang C
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009823
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Absorption coefficients of highly transparent solids: photoacoustic theory for cylindrical configurations.
    Bennett HS; Forman RA
    Appl Opt; 1976 May; 15(5):1313-21. PubMed ID: 20165172
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensitivity characteristics of broadband fiber-laser-based ultrasound sensors for photoacoustic microscopy.
    Bai X; Liang Y; Sun H; Jin L; Ma J; Guan BO; Wang L
    Opt Express; 2017 Jul; 25(15):17616-17626. PubMed ID: 28789254
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photoacoustic spectroscopy of surface adsorbed molecules using a nanostructured coupled resonator array.
    Lee D; Kim S; Van Neste CW; Lee M; Jeon S; Thundat T
    Nanotechnology; 2014 Jan; 25(3):035501. PubMed ID: 24346340
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Suppression of an acoustic mode by an elastic mode of a liquid-filled spherical shell resonator.
    Lonzaga JB; Raymond JL; Mobley J; Gaitan DF
    J Acoust Soc Am; 2011 Feb; 129(2):597-603. PubMed ID: 21361418
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photoacoustic spectroscopy on trace gases with continuously tunable CO(2) laser.
    Repond P; Sigrist MW
    Appl Opt; 1996 Jul; 35(21):4065-85. PubMed ID: 21102812
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators.
    Antao DS; Farouk B
    J Acoust Soc Am; 2013 Aug; 134(2):917-32. PubMed ID: 23927091
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential mode excitation photoacoustic spectroscopy: a new photoacoustic detection scheme.
    Rey JM; Sigrist MW
    Rev Sci Instrum; 2007 Jun; 78(6):063104. PubMed ID: 17614602
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Helmholtz resonator enhancement of photoacoustic signals.
    McClenny WA; Bennett CA; Russwurm GM; Richmond R
    Appl Opt; 1981 Feb; 20(4):650-3. PubMed ID: 20309172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Standard photoacoustic spectrometer: model and validation using O2 A-band spectra.
    Gillis KA; Havey DK; Hodges JT
    Rev Sci Instrum; 2010 Jun; 81(6):064902. PubMed ID: 20590262
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Tunable fiber laser based photoacoustic spectroscopy for acetylene detection].
    Peng Y; Yu QX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Aug; 29(8):2030-3. PubMed ID: 19839300
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Helmholtz resonance effect in photoacoustic cells.
    Fernelius NC
    Appl Opt; 1979 Jun; 18(11):1784-7. PubMed ID: 20212549
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly sensitive trace gas detection based on a miniaturized 3D-printed Y-type resonant photoacoustic cell.
    Wu G; Wu X; Gong Z; Xing J; Fan Y; Ma J; Peng W; Yu Q; Mei L
    Opt Express; 2023 Oct; 31(21):34213-34223. PubMed ID: 37859182
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transversely excited multipass photoacoustic cell using electromechanical film as microphone.
    Saarela J; Sand J; Sorvajärvi T; Manninen A; Toivonen J
    Sensors (Basel); 2010; 10(6):5294-307. PubMed ID: 22219662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoacoustic microscopy achieved by microcavity synchronous parallel acquisition technique.
    Tan Z; Liao Y; Wu Y; Tang Z; Wang RK
    Opt Express; 2012 Feb; 20(5):5802-8. PubMed ID: 22418386
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature effects in tuning fork enhanced interferometric photoacoustic spectroscopy.
    Köhring M; Böttger S; Willer U; Schade W
    Opt Express; 2013 Sep; 21(18):20911-22. PubMed ID: 24103964
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gas-phase generation of photoacoustic sound in an open environment.
    Yönak SH; Dowling DR
    J Acoust Soc Am; 2003 Dec; 114(6 Pt 1):3167-78. PubMed ID: 14714799
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of NO and NO(2) by (2 + 2) resonance-enhanced multiphoton ionization and photoacoustic spectroscopy near 454 nm.
    Pastel RL; Sausa RC
    Appl Opt; 1996 Jul; 35(21):4046-52. PubMed ID: 21102809
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.