BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 20545366)

  • 1. Production and properties of nanocellulose-reinforced methylcellulose-based biodegradable films.
    Khan RA; Salmieri S; Dussault D; Uribe-Calderon J; Kamal MR; Safrany A; Lacroix M
    J Agric Food Chem; 2010 Jul; 58(13):7878-85. PubMed ID: 20545366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification and characterization of biodegradable methylcellulose films with trimethylolpropane trimethacrylate (TMPTMA) by γ radiation: effect of nanocrystalline cellulose.
    Sharmin N; Khan RA; Salmieri S; Dussault D; Bouchard J; Lacroix M
    J Agric Food Chem; 2012 Jan; 60(2):623-9. PubMed ID: 22217269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of novel hydroxypropyl methylcellulose films containing chitosan nanoparticles.
    de Moura MR; Avena-Bustillos RJ; McHugh TH; Krochta JM; Mattoso LH
    J Food Sci; 2008 Sep; 73(7):N31-7. PubMed ID: 18803724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amaranthus cruentus flour edible films: influence of stearic acid addition, plasticizer concentration, and emulsion stirring speed on water vapor permeability and mechanical properties.
    Colla E; do Amaral Sobral PJ; Menegalli FC
    J Agric Food Chem; 2006 Sep; 54(18):6645-53. PubMed ID: 16939322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films.
    Shankar S; Rhim JW
    Carbohydr Polym; 2016 Jan; 135():18-26. PubMed ID: 26453846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of ionizing radiation on the physicochemical and mechanical properties of commercial monolayer flexible plastics packaging materials.
    Goulas AE; Riganakos KA; Badeka A; Kontominas MG
    Food Addit Contam; 2002 Dec; 19(12):1190-9. PubMed ID: 12623680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial and physicochemical properties of chitosan-HPMC-based films.
    Möller H; Grelier S; Pardon P; Coma V
    J Agric Food Chem; 2004 Oct; 52(21):6585-91. PubMed ID: 15479027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films.
    Khan A; Khan RA; Salmieri S; Le Tien C; Riedl B; Bouchard J; Chauve G; Tan V; Kamal MR; Lacroix M
    Carbohydr Polym; 2012 Nov; 90(4):1601-8. PubMed ID: 22944422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films.
    Kanmani P; Rhim JW
    Food Chem; 2014 Apr; 148():162-9. PubMed ID: 24262541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of protein and glycerol concentration on the mechanical, optical, and water vapor barrier properties of canola protein isolate-based edible films.
    Chang C; Nickerson MT
    Food Sci Technol Int; 2015 Jan; 21(1):33-44. PubMed ID: 24072788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of gallic acid and tannic acid on the mechanical and barrier properties of wheat gluten films.
    Hager AS; Vallons KJ; Arendt EK
    J Agric Food Chem; 2012 Jun; 60(24):6157-63. PubMed ID: 22646694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Composite edible films based on hydroxypropyl methylcellulose reinforced with microcrystalline cellulose nanoparticles.
    Bilbao-Sáinz C; Avena-Bustillos RJ; Wood DF; Williams TG; McHugh TH
    J Agric Food Chem; 2010 Mar; 58(6):3753-60. PubMed ID: 20187652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of emulsifier type and content on functional properties of polysaccharide lipid-based edible films.
    Bravin B; Peressini D; Sensidoni A
    J Agric Food Chem; 2004 Oct; 52(21):6448-55. PubMed ID: 15479005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Barrier and mechanical properties of milk protein-based edible films containing nutraceuticals.
    Mei Y; Zhao Y
    J Agric Food Chem; 2003 Mar; 51(7):1914-8. PubMed ID: 12643651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical performance of biodegradable films intended for antimicrobial food packaging.
    Marcos B; Aymerich T; Monfort JM; Garriga M
    J Food Sci; 2010 Oct; 75(8):E502-7. PubMed ID: 21535488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and characterisation of composite films made of kefiran and starch.
    Motedayen AA; Khodaiyan F; Salehi EA
    Food Chem; 2013 Feb; 136(3-4):1231-8. PubMed ID: 23194518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of Penicillium digitatum and Penicillium italicum by hydroxypropyl methylcellulose-lipid edible composite films containing food additives with antifungal properties.
    Valencia-Chamorro SA; Palou L; del Río MA; Pérez-Gago MB
    J Agric Food Chem; 2008 Dec; 56(23):11270-8. PubMed ID: 19012404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose.
    Reddy JP; Rhim JW
    Carbohydr Polym; 2014 Sep; 110():480-8. PubMed ID: 24906782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content.
    Azeredo HM; Mattoso LH; Avena-Bustillos RJ; Filho GC; Munford ML; Wood D; McHugh TH
    J Food Sci; 2010; 75(1):N1-7. PubMed ID: 20492188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils.
    Ghasemlou M; Aliheidari N; Fahmi R; Shojaee-Aliabadi S; Keshavarz B; Cran MJ; Khaksar R
    Carbohydr Polym; 2013 Oct; 98(1):1117-26. PubMed ID: 23987453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.