These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 20545661)

  • 1. Optimal moving angle of pusher plate in occlusive-type pulsatile blood pump.
    Choi H; Lee H; Choi J; Lee JJ; Nam KW; Park JW; Park Y; Sun K; Lee HM
    Artif Organs; 2010 Jul; 34(7):554-60. PubMed ID: 20545661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of hemolytic properties of different shapes of occlusion of blood sac in occlusive-type pulsatile blood pump.
    Choi H; Min BG; Won YS
    Artif Organs; 2008 Feb; 32(2):160-6. PubMed ID: 18269354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemodialysis using a valveless pulsatile blood pump.
    Lee K; Mun CH; Lee SR; Min BG; Yoo KJ; Park YW; Won YS
    ASAIO J; 2008; 54(2):191-6. PubMed ID: 18356654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multiple disk centrifugal pump as a blood flow device.
    Miller GE; Etter BD; Dorsi JM
    IEEE Trans Biomed Eng; 1990 Feb; 37(2):157-63. PubMed ID: 2312140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemodynamic support with the pulsatile catheter pump in a sheep model of acute heart failure.
    Li Z; Gu YJ; Ye Q; Cheng S; Wang W; Tang M; Zhao X; Rakhorst G; Chen C
    Artif Organs; 2006 Nov; 30(11):881-8. PubMed ID: 17062112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing the circuit of a pulsatile extracorporeal life support system in terms of energy equivalent pressure and surplus hemodynamic energy.
    Lim CH; Yang S; Choi JW; Sun K
    Artif Organs; 2009 Nov; 33(11):1015-20. PubMed ID: 19849687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, development, and first in vivo results of an implantable ventricular assist device, MicroVad.
    Kerkhoffs W; Schumacher O; Meyns B; Verbeken E; Leunens V; Bollen H; Reul H
    Artif Organs; 2004 Oct; 28(10):904-10. PubMed ID: 15384996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment and improvement of the system efficiency for the moving-actuator type biventricular assist device.
    Chung J; Kim WE; Lee JJ; Nam KW; Choi J; Park JW; Choi SW; Park CY; Sun K; Min BG
    Artif Organs; 2004 Jun; 28(6):549-55. PubMed ID: 15153147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of a pressure-relieving air compliance chamber in a single-pulsatile extracorporeal life support system: an experimental study.
    Kim TS; Sun K; Lee KB; Lee HW; Baek KJ; Park SY; Son HS; Kim KT; Kim HM
    Artif Organs; 2004 Dec; 28(12):1106-9. PubMed ID: 15554940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Centrifugal blood pump (animal experiments) (author's transl)].
    Hermann W; Stenzl W; Tscheliessnigg KH; Dacar D; Semmelrock HJ
    Zentralbl Chir; 1981; 106(23):1543-55. PubMed ID: 7331579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Durability improvement of polymer chamber of pulsatile extracorporeal life support system in terms of mechanical change.
    Choi H; Paik SH; Lee KH; Min BG; Won YS
    Med Biol Eng Comput; 2007 Nov; 45(11):1127-35. PubMed ID: 17721715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of hydraulic and hemolytic properties of different impeller designs of an implantable rotary blood pump by computational fluid dynamics.
    Arvand A; Hahn N; Hormes M; Akdis M; Martin M; Reul H
    Artif Organs; 2004 Oct; 28(10):892-8. PubMed ID: 15384994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A long-term ventricular assist system.
    Pierce WS; Snyder AJ; Rosenberg G; Weiss WJ; Pae WE; Waldhausen JA
    J Thorac Cardiovasc Surg; 1993 Mar; 105(3):520-4. PubMed ID: 8445929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemolysis. A comparative study of four nonpulsatile pumps.
    Oku T; Harasaki H; Smith W; Nosé Y
    ASAIO Trans; 1988; 34(3):500-4. PubMed ID: 3196553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational fluid dynamics verified the advantages of streamlined impeller design in improving flow patterns and anti-haemolysis properties of centrifugal pump.
    Qian KX; Wang FQ; Zeng P; Ru WM; Yuan HY; Feng ZG
    J Med Eng Technol; 2006; 30(6):353-7. PubMed ID: 17060163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new method of producing pulsatile flow during cardiopulmonary bypass using a standard roller pump.
    Ciardullo R; Schaff HV; Flaherty JT; Gott VL
    J Thorac Cardiovasc Surg; 1976 Oct; 72(4):585-7. PubMed ID: 966791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational analysis of the three-dimensional hemodynamics of the blood sac in the twin-pulse life-support system.
    Jeong GS; Shim EB; Ko HJ; Youn CH; Sun K; Goo Min B
    J Artif Organs; 2004; 7(4):174-80. PubMed ID: 15739049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle powered blood pump: design and initial test results.
    Trumble DR; Magovern JA
    ASAIO J; 1999; 45(3):178-82. PubMed ID: 10360719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of a 3-bladed propeller pump to provide cavopulmonary assist in the failing Fontan circulation.
    Throckmorton AL; Ballman KK; Myers CD; Frankel SH; Brown JW; Rodefeld MD
    Ann Thorac Surg; 2008 Oct; 86(4):1343-7. PubMed ID: 18805191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Spectral analysis of the arterial pulse during extracorporeal circulation. Experimental study in dogs].
    Awad MT; Stolf NA; Gomes OM; Jazbik Ade P; Murad H; Bastos E
    Arq Bras Cardiol; 1990 Mar; 54(3):199-204. PubMed ID: 2288506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.