These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 20545859)

  • 1. The beta-subunits of the Snf1 kinase in Saccharomyces cerevisiae, Gal83 and Sip2, but not Sip1, are redundant in glucose derepression and regulation of sterol biosynthesis.
    Zhang J; Olsson L; Nielsen J
    Mol Microbiol; 2010 Jul; 77(2):371-83. PubMed ID: 20545859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex.
    Jiang R; Carlson M
    Mol Cell Biol; 1997 Apr; 17(4):2099-106. PubMed ID: 9121458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pak1 protein kinase regulates activation and nuclear localization of Snf1-Gal83 protein kinase.
    Hedbacker K; Hong SP; Carlson M
    Mol Cell Biol; 2004 Sep; 24(18):8255-63. PubMed ID: 15340085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. beta-subunits of Snf1 kinase are required for kinase function and substrate definition.
    Schmidt MC; McCartney RR
    EMBO J; 2000 Sep; 19(18):4936-43. PubMed ID: 10990457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism.
    Vincent O; Townley R; Kuchin S; Carlson M
    Genes Dev; 2001 May; 15(9):1104-14. PubMed ID: 11331606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential roles of the glycogen-binding domains of beta subunits in regulation of the Snf1 kinase complex.
    Mangat S; Chandrashekarappa D; McCartney RR; Elbing K; Schmidt MC
    Eukaryot Cell; 2010 Jan; 9(1):173-83. PubMed ID: 19897735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression and regulation of the AMP-activated protein kinase-SNF1 (sucrose non-fermenting 1) kinase complexes in yeast and mammalian cells: studies using chimaeric catalytic subunits.
    Daniel T; Carling D
    Biochem J; 2002 Aug; 365(Pt 3):629-38. PubMed ID: 11971761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AMPK in Yeast: The SNF1 (Sucrose Non-fermenting 1) Protein Kinase Complex.
    Sanz P; Viana R; Garcia-Gimeno MA
    Exp Suppl; 2016; 107():353-374. PubMed ID: 27812987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gal83 mediates the interaction of the Snf1 kinase complex with the transcription activator Sip4.
    Vincent O; Carlson M
    EMBO J; 1999 Dec; 18(23):6672-81. PubMed ID: 10581241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological characterization of glucose repression in the strains with SNF1 and SNF4 genes deleted.
    Usaite R; Nielsen J; Olsson L
    J Biotechnol; 2008 Jan; 133(1):73-81. PubMed ID: 17949842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Snf1 kinases with different beta-subunit isoforms play distinct roles in regulating haploid invasive growth.
    Vyas VK; Kuchin S; Berkey CD; Carlson M
    Mol Cell Biol; 2003 Feb; 23(4):1341-8. PubMed ID: 12556493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The β subunit of yeast AMP-activated protein kinase directs substrate specificity in response to alkaline stress.
    Chandrashekarappa DG; McCartney RR; O'Donnell AF; Schmidt MC
    Cell Signal; 2016 Dec; 28(12):1881-1893. PubMed ID: 27592031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A family of proteins containing a conserved domain that mediates interaction with the yeast SNF1 protein kinase complex.
    Yang X; Jiang R; Carlson M
    EMBO J; 1994 Dec; 13(24):5878-86. PubMed ID: 7813428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae.
    Schüller HJ
    Curr Genet; 2003 Jun; 43(3):139-60. PubMed ID: 12715202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic and carbon source regulation of phosphorylation of Sip1p, a Snf1p-associated protein involved in carbon response in Saccharomyces cerevisiae.
    Long RM; Hopper JE
    Yeast; 1995 Mar; 11(3):233-46. PubMed ID: 7785324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the nucleocytoplasmic distribution of Snf1-Gal83 protein kinase.
    Hedbacker K; Carlson M
    Eukaryot Cell; 2006 Dec; 5(12):1950-6. PubMed ID: 17071825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced multi-stress tolerance and glucose utilization of Saccharomyces cerevisiae by overexpression of the SNF1 gene and varied beta isoform of Snf1 dominates in stresses.
    Meng L; Liu HL; Lin X; Hu XP; Teng KR; Liu SX
    Microb Cell Fact; 2020 Jun; 19(1):134. PubMed ID: 32571355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression control of the AMPK regulatory subunit and its functional significance in yeast ER stress response.
    Kimura Y; Irie K; Mizuno T
    Sci Rep; 2017 Apr; 7():46713. PubMed ID: 28429799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active Snf1 protein kinase inhibits expression of the Saccharomyces cerevisiae HXT1 glucose transporter gene.
    Tomás-Cobos L; Sanz P
    Biochem J; 2002 Dec; 368(Pt 2):657-63. PubMed ID: 12220226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations in the gal83 glycogen-binding domain activate the snf1/gal83 kinase pathway by a glycogen-independent mechanism.
    Wiatrowski HA; Van Denderen BJ; Berkey CD; Kemp BE; Stapleton D; Carlson M
    Mol Cell Biol; 2004 Jan; 24(1):352-61. PubMed ID: 14673168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.