These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 2054610)

  • 1. Axonal growth and glial migration from co-cultured hippocampal and septal slices into fibrin-fibronectin-containing matrix of peripheral regeneration chambers: a light and electron microscope study.
    Knoops B; Hubert I; Hauw JJ; van den Bosch de Aguilar P
    Brain Res; 1991 Feb; 540(1-2):183-94. PubMed ID: 2054610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regeneration of lesioned cholinergic septal neurons of the adult rat can be promoted by peripheral nerve grafts and a fibrin-fibronectin-containing matrix of peripheral regeneration chambers.
    Knoops B; Ponsar C; Hubert I; van den Bosch de Aguilar P
    Brain Res Bull; 1993; 30(3-4):433-7. PubMed ID: 8457893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axonal regeneration after peripheral nerve grafting and fibrin-fibronectin-containing matrix implantation on the injured septohippocampal pathway of the adult rat: a light and electron microscopic study.
    Knoops B; Ponsar C; Hubert I; van den Bosch de Aguilar P
    Restor Neurol Neurosci; 1993 Jan; 5(2):103-17. PubMed ID: 21551704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Somatic gene transfer of nerve growth factor promotes the survival of axotomized septal neurons and the regeneration of their axons in adult rats.
    Kawaja MD; Rosenberg MB; Yoshida K; Gage FH
    J Neurosci; 1992 Jul; 12(7):2849-64. PubMed ID: 1319481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nerve growth factor promotes CNS cholinergic axonal regeneration into acellular peripheral nerve grafts.
    Hagg T; Gulati AK; Behzadian MA; Vahlsing HL; Varon S; Manthorpe M
    Exp Neurol; 1991 Apr; 112(1):79-88. PubMed ID: 2013309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Septohippocampal cholinergic axonal regeneration through peripheral nerve bridges: quantification and temporal development.
    Hagg T; Vahlsing HL; Manthorpe M; Varon S
    Exp Neurol; 1990 Aug; 109(2):153-63. PubMed ID: 2379554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proliferation and differentiation of glial fibrillary acidic protein-immunoreactive glial cells in organotypic slice cultures of rat hippocampus.
    del Rio JA; Heimrich B; Soriano E; Schwegler H; Frotscher M
    Neuroscience; 1991; 43(2-3):335-47. PubMed ID: 1922776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurite-promoting factors and extracellular matrix components accumulating in vivo within nerve regeneration chambers.
    Longo FM; Hayman EG; Davis GE; Ruoslahti E; Engvall E; Manthorpe M; Varon S
    Brain Res; 1984 Aug; 309(1):105-17. PubMed ID: 6488001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transplants of Schwann cell cultures promote axonal regeneration in the adult mammalian brain.
    Kromer LF; Cornbrooks CJ
    Proc Natl Acad Sci U S A; 1985 Sep; 82(18):6330-4. PubMed ID: 3862133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regeneration of cut adult axons fails even in the presence of continuous aligned glial pathways.
    Davies SJ; Field PM; Raisman G
    Exp Neurol; 1996 Dec; 142(2):203-16. PubMed ID: 8934554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glial progenitor cell migration promotes CNS axon growth on functionalized electroconducting microfibers.
    Collazos-Castro JE; GarcĂ­a-Rama C; Alves-Sampaio A
    Acta Biomater; 2016 Apr; 35():42-56. PubMed ID: 26884276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial distributions of cytoskeletal proteins and the nerve growth factor receptor in septal transplants in oculo: protection from abnormal immunoreactivity by hippocampal co-grafts.
    Doering LC; Eriksdotter-Nilsson M; Olson L
    Neuroscience; 1991; 44(2):381-92. PubMed ID: 1719448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization of the nervous tissue (hippocampus and septum) developing in the anterior eye chamber. III. Axonal processes and their synaptic endings.
    Zhuravleva ZN; Bragin AG; Vinogradova OS
    J Hirnforsch; 1986; 27(3):323-41. PubMed ID: 3760546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reformation in adult rats of functional septo-hippocampal connections by septal neurons regenerating across an embryonic hippocampal tissue bridge.
    Segal M; Stenevi U; Bjorklund A
    Neurosci Lett; 1981 Nov; 27(1):7-12. PubMed ID: 7329625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of delayed transplantation of cultured Schwann cells on axonal regeneration from central nervous system cholinergic neurons.
    Neuberger TJ; Cornbrooks CJ; Kromer LF
    J Comp Neurol; 1992 Jan; 315(1):16-33. PubMed ID: 1541722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exogenous fibrin matrix precursors stimulate the temporal progress of nerve regeneration within a silicone chamber.
    Williams LR
    Neurochem Res; 1987 Oct; 12(10):851-60. PubMed ID: 3683735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Addition of fibronectin to alginate matrix improves peripheral nerve regeneration in tissue-engineered conduits.
    Mosahebi A; Wiberg M; Terenghi G
    Tissue Eng; 2003 Apr; 9(2):209-18. PubMed ID: 12740084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Axonal regeneration is associated with glial migration: comparison between the injured optic nerves of fish and rats.
    Blaugrund E; Lavie V; Cohen I; Solomon A; Schreyer DJ; Schwartz M
    J Comp Neurol; 1993 Apr; 330(1):105-12. PubMed ID: 8468398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel and efficient gene transfer strategy reduces glial reactivity and improves neuronal survival and axonal growth in vitro.
    Desclaux M; Teigell M; Amar L; Vogel R; Gimenez Y Ribotta M; Privat A; Mallet J
    PLoS One; 2009 Jul; 4(7):e6227. PubMed ID: 19597552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructure of intermediate filaments of nestin- and vimentin-immunoreactive astrocytes in organotypic slice cultures of hippocampus.
    Miyaguchi K
    J Struct Biol; 1997 Oct; 120(1):61-8. PubMed ID: 9356292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.