BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 20546609)

  • 1. ADAMTS1 alters blood vessel morphology and TSP1 levels in LNCaP and LNCaP-19 prostate tumors.
    Gustavsson H; Tesan T; Jennbacken K; Kuno K; Damber JE; Welén K
    BMC Cancer; 2010 Jun; 10():288. PubMed ID: 20546609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered expression of genes regulating angiogenesis in experimental androgen-independent prostate cancer.
    Gustavsson H; Jennbacken K; Welén K; Damber JE
    Prostate; 2008 Feb; 68(2):161-70. PubMed ID: 18076023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The prostatic environment suppresses growth of androgen-independent prostate cancer xenografts: an effect influenced by testosterone.
    Jennbacken K; Gustavsson H; Tesan T; Horn M; Vallbo C; Welén K; Damber JE
    Prostate; 2009 Aug; 69(11):1164-75. PubMed ID: 19399749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variable inhibition of thrombospondin 1 against liver and lung metastases through differential activation of metalloproteinase ADAMTS1.
    Lee YJ; Koch M; Karl D; Torres-Collado AX; Fernando NT; Rothrock C; Kuruppu D; Ryeom S; Iruela-Arispe ML; Yoon SS
    Cancer Res; 2010 Feb; 70(3):948-56. PubMed ID: 20103648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Androgens repress the expression of the angiogenesis inhibitor thrombospondin-1 in normal and neoplastic prostate.
    Colombel M; Filleur S; Fournier P; Merle C; Guglielmi J; Courtin A; Degeorges A; Serre CM; Bouvier R; Clézardin P; Cabon F
    Cancer Res; 2005 Jan; 65(1):300-8. PubMed ID: 15665307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human prostate tumor angiogenesis in nude mice: metalloprotease and plasminogen activator activities during tumor growth and neovascularization of subcutaneously injected matrigel impregnated with human prostate tumor cells.
    Wilson MJ; Sinha AA
    Anat Rec; 1997 Sep; 249(1):63-73. PubMed ID: 9294650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of ADAMTS1 and its correlation with angiogenesis in primary gastric cancer and lymph node metastasis.
    Chen J; Zhi Y; Chang X; Zhang S; Dai D
    Dig Dis Sci; 2013 Feb; 58(2):405-13. PubMed ID: 23001403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ADAMTS1 mediates the release of antiangiogenic polypeptides from TSP1 and 2.
    Lee NV; Sato M; Annis DS; Loo JA; Wu L; Mosher DF; Iruela-Arispe ML
    EMBO J; 2006 Nov; 25(22):5270-83. PubMed ID: 17082774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pericyte coverage decreases invasion of tumour cells into blood vessels in prostate cancer xenografts.
    Welén K; Jennbacken K; Tesan T; Damber JE
    Prostate Cancer Prostatic Dis; 2009; 12(1):41-6. PubMed ID: 18521102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ADAMTS1, a putative anti-angiogenic factor, is decreased in human prostate cancer.
    Gustavsson H; Wang W; Jennbacken K; Welén K; Damber JE
    BJU Int; 2009 Dec; 104(11):1786-90. PubMed ID: 19522863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stromal cells promote angiogenesis and growth of human prostate tumors in a differential reactive stroma (DRS) xenograft model.
    Tuxhorn JA; McAlhany SJ; Dang TD; Ayala GE; Rowley DR
    Cancer Res; 2002 Jun; 62(11):3298-307. PubMed ID: 12036948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential expression of angiopoietin-2 and vascular endothelial growth factor in androgen-independent prostate cancer models.
    Tesan T; Gustavsson H; Welén K; Damber JE
    BJU Int; 2008 Sep; 102(8):1034-9. PubMed ID: 18489523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition of an androgen-dependent human prostate cancer cell line into an androgen-independent subline is associated with increased angiogenesis.
    Gustavsson H; Welén K; Damber JE
    Prostate; 2005 Mar; 62(4):364-73. PubMed ID: 15389782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thrombospondin-1 triggers cell migration and development of advanced prostate tumors.
    Firlej V; Mathieu JR; Gilbert C; Lemonnier L; Nakhlé J; Gallou-Kabani C; Guarmit B; Morin A; Prevarskaya N; Delongchamps NB; Cabon F
    Cancer Res; 2011 Dec; 71(24):7649-58. PubMed ID: 22037878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor growth inhibitory effect of ADAMTS1 is accompanied by the inhibition of tumor angiogenesis.
    Obika M; Ogawa H; Takahashi K; Li J; Hatipoglu OF; Cilek MZ; Miyoshi T; Inagaki J; Ohtsuki T; Kusachi S; Ninomiya Y; Hirohata S
    Cancer Sci; 2012 Oct; 103(10):1889-97. PubMed ID: 22776012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Downregulation of A disintegrin and metallopeptidase with thrombospondin motif type 1 by DNA hypermethylation in human gastric cancer.
    Chen J; Zhang C; Xu X; Zhu X; Dai D
    Mol Med Rep; 2015 Aug; 12(2):2487-94. PubMed ID: 25936341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ADAMTS1 protease gene is required for mammary tumor growth and metastasis.
    Ricciardelli C; Frewin KM; Tan Ide A; Williams ED; Opeskin K; Pritchard MA; Ingman WV; Russell DL
    Am J Pathol; 2011 Dec; 179(6):3075-85. PubMed ID: 22001177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Androgen regulates ADAMTS15 gene expression in prostate cancer cells.
    Molokwu CN; Adeniji OO; Chandrasekharan S; Hamdy FC; Buttle DJ
    Cancer Invest; 2010 Aug; 28(7):698-710. PubMed ID: 20590445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of ADAMTS1 as a tumor suppressor gene in human breast carcinoma. Linking its tumor inhibitory properties to its proteolytic activity on nidogen-1 and nidogen-2.
    Martino-Echarri E; Fernández-Rodríguez R; Rodríguez-Baena FJ; Barrientos-Durán A; Torres-Collado AX; Plaza-Calonge Mdel C; Amador-Cubero S; Cortés J; Reynolds LE; Hodivala-Dilke KM; Rodríguez-Manzaneque JC
    Int J Cancer; 2013 Nov; 133(10):2315-24. PubMed ID: 23681936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vascular endothelial growth factor upregulates expression of ADAMTS1 in endothelial cells through protein kinase C signaling.
    Xu Z; Yu Y; Duh EJ
    Invest Ophthalmol Vis Sci; 2006 Sep; 47(9):4059-66. PubMed ID: 16936124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.