These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 2054662)

  • 1. Simultaneous measurement of plasma and brain extracellular fluid concentrations of catechols after yohimbine administration in rats.
    Szemeredi K; Komoly S; Kopin IJ; Bagdy G; Keiser HR; Goldstein DS
    Brain Res; 1991 Feb; 542(1):8-14. PubMed ID: 2054662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alpha2-adrenoceptor-mediated restraint of norepinephrine synthesis, release, and turnover during immobilization in rats.
    Tjurmina OA; Goldstein DS; Palkovits M; Kopin IJ
    Brain Res; 1999 May; 826(2):243-52. PubMed ID: 10224302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo hypothalamic release and synthesis of catecholamines in spontaneously hypertensive rats.
    Pacák K; Yadid G; Jakab G; Lenders JW; Kopin IJ; Goldstein DS
    Hypertension; 1993 Oct; 22(4):467-78. PubMed ID: 8406651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterns of cerebrospinal fluid catechols support increased central noradrenergic responsiveness in aging and Alzheimer's disease.
    Raskind MA; Peskind ER; Holmes C; Goldstein DS
    Biol Psychiatry; 1999 Sep; 46(6):756-65. PubMed ID: 10494443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypercortisolemia inhibits yohimbine-induced release of norepinephrine in the posterolateral hypothalamus of conscious rats.
    Pacak K; Armando I; Komoly S; Fukuhara K; Weise VK; Holmes C; Kopin IJ; Goldstein DS
    Endocrinology; 1992 Sep; 131(3):1369-76. PubMed ID: 1505468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sympathoadrenomedullary hyper-responsiveness to yohimbine in juvenile spontaneously hypertensive rats.
    Szemeredi K; Bagdy G; Stull R; Keiser HR; Kopin IJ; Goldstein DS
    Life Sci; 1988; 43(13):1063-8. PubMed ID: 3172973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasma dihydroxyphenylglycol and the intraneuronal disposition of norepinephrine in humans.
    Goldstein DS; Eisenhofer G; Stull R; Folio CJ; Keiser HR; Kopin IJ
    J Clin Invest; 1988 Jan; 81(1):213-20. PubMed ID: 3335637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of a peripherally acting alpha 2-adrenoceptor antagonist (L-659,066) on hemodynamics and plasma levels of catechols in conscious rats.
    Szemeredi K; Stull R; Kopin IJ; Goldstein DS
    Eur J Pharmacol; 1989 Oct; 170(1-2):53-9. PubMed ID: 2575527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of single or repeated immobilization on release of norepinephrine and its metabolites in the central nucleus of the amygdala in conscious rats.
    Pacák K; Palkovits M; Kvetnanský R; Fukuhara K; Armando I; Kopin IJ; Goldstein DS
    Neuroendocrinology; 1993 Apr; 57(4):626-33. PubMed ID: 8367029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of yohimbine and phenoxybenzamine on norepinephrine metabolites in rat brain.
    Edwards DJ; Sorisio DA
    Res Commun Chem Pathol Pharmacol; 1988 Nov; 62(2):195-206. PubMed ID: 3251333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Further characterization of brain 3,4-dihydroxyphenylethyleneglycol (DHPG) formation: dependence on noradrenergic activity and site of formation.
    Li PP; Warsh JJ; Godse DD
    Naunyn Schmiedebergs Arch Pharmacol; 1986 Jan; 332(1):26-33. PubMed ID: 3951564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional extraction of circulating norepinephrine, DOPA, and dihydroxyphenylglycol in humans.
    Goldstein DS; Cannon RO; Quyyumi A; Chang P; Duncan M; Brush JE; Eisenhofer G
    J Auton Nerv Syst; 1991 Jun; 34(1):17-35. PubMed ID: 1940014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that exogenous but not endogenous norepinephrine activates the presynaptic alpha-2 adrenoceptors on serotonergic nerve endings in the rat hypothalamus.
    Galzin AM; Moret C; Langer SZ
    J Pharmacol Exp Ther; 1984 Mar; 228(3):725-32. PubMed ID: 6323679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Source and physiological significance of plasma 3,4-dihydroxyphenylglycol and 3-methoxy-4-hydroxyphenylglycol.
    Eisenhofer G; Goldstein DS; Ropchak TG; Nguyen HQ; Keiser HR; Kopin IJ
    J Auton Nerv Syst; 1988 Sep; 24(1-2):1-14. PubMed ID: 3209794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasma 3,4-dihydroxyphenylglycol (DHPG) and 3-methoxy-4-hydroxyphenylglycol (MHPG) are insensitive indicators of alpha 2-adrenoceptor mediated regulation of norepinephrine release in healthy human volunteers.
    Scheinin M; Karhuvaara S; Ojala-Karlsson P; Kallio A; Koulu M
    Life Sci; 1991; 49(1):75-84. PubMed ID: 1646924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Destruction of noradrenergic terminals increases dopamine concentration and reduces dopamine metabolism in the medial prefrontal cortex.
    Gálosi R; Petykó Z; Kállai V; Tóth A; Ollmann T; Péczely L; Kovács A; Berta B; Lénárd L
    Behav Brain Res; 2018 May; 344():57-64. PubMed ID: 29454007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of norepinephrine release in adriamycin-induced heart failure in rabbits: role of presynaptic alpha 2-adrenoceptors and presynaptic angiotensin II receptors.
    Minatoguchi S; Majewski H
    J Cardiovasc Pharmacol; 1994 Mar; 23(3):438-45. PubMed ID: 7515988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucocorticoids, sympathetic activity, and presynaptic alpha 2-adrenoceptor function in humans.
    Lenders JW; Golczynska A; Goldstein DS
    J Clin Endocrinol Metab; 1995 Jun; 80(6):1804-8. PubMed ID: 7775627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dihydroxyphenylglycol and intraneuronal metabolism of endogenous and exogenous norepinephrine in the rat vas deferens.
    Eisenhofer G; Ropchak TG; Stull RW; Goldstein DS; Keiser HR; Kopin IJ
    J Pharmacol Exp Ther; 1987 May; 241(2):547-53. PubMed ID: 3572811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noradrenergic terminals are the primary source of α
    Devoto P; Flore G; Saba P; Scheggi S; Mulas G; Gambarana C; Spiga S; Gessa GL
    Prog Neuropsychopharmacol Biol Psychiatry; 2019 Mar; 90():97-103. PubMed ID: 30472147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.