BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 20546886)

  • 1. Early transcriptional responses in mouse embryos as a basis for selection of molecular markers predictive of valproic acid teratogenicity.
    Kultima K; Jergil M; Salter H; Gustafson AL; Dencker L; Stigson M
    Reprod Toxicol; 2010 Nov; 30(3):457-68. PubMed ID: 20546886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Valproic acid-induced deregulation in vitro of genes associated in vivo with neural tube defects.
    Jergil M; Kultima K; Gustafson AL; Dencker L; Stigson M
    Toxicol Sci; 2009 Mar; 108(1):132-48. PubMed ID: 19136453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-time gene expression response to valproic acid and valproic acid analogs in mouse embryonic stem cells.
    Jergil M; Forsberg M; Salter H; Stockling K; Gustafson AL; Dencker L; Stigson M
    Toxicol Sci; 2011 Jun; 121(2):328-42. PubMed ID: 21427059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of gene expression responses in rat whole embryo culture and in vivo: time-dependent retinoic acid-induced teratogenic response.
    Robinson JF; Verhoef A; Pennings JL; Pronk TE; Piersma AH
    Toxicol Sci; 2012 Mar; 126(1):242-54. PubMed ID: 22262565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of the homeotic gene Hoxa1 through valproic acid's teratogenic mechanism of action.
    Stodgell CJ; Ingram JL; O'Bara M; Tisdale BK; Nau H; Rodier PM
    Neurotoxicol Teratol; 2006; 28(5):617-24. PubMed ID: 16989981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New molecular bioassays for the estimation of the teratogenic potency of valproic acid derivatives in vitro: activation of the peroxisomal proliferator-activated receptor (PPARdelta).
    Lampen A; Siehler S; Ellerbeck U; Göttlicher M; Nau H
    Toxicol Appl Pharmacol; 1999 Nov; 160(3):238-49. PubMed ID: 10544058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of embryotoxic effects of valproic acid-derivatives with molecular in vitro methods.
    Lampen A; Göttlicher M; Nau H
    ALTEX; 2001; 18(2):123-6. PubMed ID: 11378687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of early-responsive genes correlated to valproic acid-induced neural tube defects in mice.
    Okada A; Kushima K; Aoki Y; Bialer M; Fujiwara M
    Birth Defects Res A Clin Mol Teratol; 2005 Apr; 73(4):229-38. PubMed ID: 15799026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Valproic acid-induced somite teratogenesis in the chick embryo: relationship with Pax-1 gene expression.
    Barnes GL; Mariani BD; Tuan RS
    Teratology; 1996 Aug; 54(2):93-102. PubMed ID: 8948545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Teratogenic effects of valproic acid and diphenylhydantoin on mouse embryos in culture.
    Bruckner A; Lee YJ; O'Shea KS; Henneberry RC
    Teratology; 1983 Feb; 27(1):29-42. PubMed ID: 6405496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embryotoxicant-specific transcriptomic responses in rat postimplantation whole-embryo culture.
    Robinson JF; van Beelen VA; Verhoef A; Renkens MF; Luijten M; van Herwijnen MH; Westerman A; Pennings JL; Piersma AH
    Toxicol Sci; 2010 Dec; 118(2):675-85. PubMed ID: 20864626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Valproic acid increases formation of reactive oxygen species and induces apoptosis in postimplantation embryos: a role for oxidative stress in valproic acid-induced neural tube defects.
    Tung EW; Winn LM
    Mol Pharmacol; 2011 Dec; 80(6):979-87. PubMed ID: 21868484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure.
    Colleoni S; Galli C; Gaspar JA; Meganathan K; Jagtap S; Hescheler J; Sachinidis A; Lazzari G
    Toxicol Sci; 2011 Dec; 124(2):370-7. PubMed ID: 21934132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valproic acid-induced gene expression responses in rat whole embryo culture and comparison across in vitro developmental and non-developmental models.
    Tonk EC; Robinson JF; Verhoef A; Theunissen PT; Pennings JL; Piersma AH
    Reprod Toxicol; 2013 Nov; 41():57-66. PubMed ID: 23811354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxamic acid and fluorinated derivatives of valproic acid: anticonvulsant activity, neurotoxicity and teratogenicity.
    Gravemann U; Volland J; Nau H
    Neurotoxicol Teratol; 2008; 30(5):390-4. PubMed ID: 18455366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular approaches to developmental malformations using analogous forms of valproic acid.
    Okada A; Fujiwara M
    Congenit Anom (Kyoto); 2006 Jun; 46(2):68-75. PubMed ID: 16732764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lack of concordance between heat shock proteins and the development of tolerance to teratogen-induced neural tube defects.
    Finnell RH; Van Waes M; Bennett GD; Eberwine JH
    Dev Genet; 1993; 14(2):137-47. PubMed ID: 8482018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribonucleotide reductase subunit R1: a gene conferring sensitivity to valproic acid-induced neural tube defects in mice.
    Craig JC; Bennett GD; Miranda RC; Mackler SA; Finnell RH
    Teratology; 2000 Apr; 61(4):305-13. PubMed ID: 10716750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Valproic acid teratogenicity: a toxicogenomics approach.
    Kultima K; Nyström AM; Scholz B; Gustafson AL; Dencker L; Stigson M
    Environ Health Perspect; 2004 Aug; 112(12):1225-35. PubMed ID: 15345369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Teratogenic effects of sodium valproate in mice and rats at midgestation and at term.
    Menegola E; Broccia ML; Nau H; Prati M; Ricolfi R; Giavini E
    Teratog Carcinog Mutagen; 1996; 16(2):97-108. PubMed ID: 8875740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.