These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 20547057)
1. Use of Chlorella vulgaris for bioremediation of textile wastewater. Lim SL; Chu WL; Phang SM Bioresour Technol; 2010 Oct; 101(19):7314-22. PubMed ID: 20547057 [TBL] [Abstract][Full Text] [Related]
2. Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor. Wijetunga S; Li XF; Jian C J Hazard Mater; 2010 May; 177(1-3):792-8. PubMed ID: 20074855 [TBL] [Abstract][Full Text] [Related]
3. Effect of nitrogen and phosphorus concentration on their removal kinetic in treated urban wastewater by Chlorella vulgaris. Ruiz J; Alvarez P; Arbib Z; Garrido C; Barragán J; Perales JA Int J Phytoremediation; 2011 Oct; 13(9):884-96. PubMed ID: 21972511 [TBL] [Abstract][Full Text] [Related]
4. Effect of L-glutamic acid on the growth and ammonium removal from ammonium solution and natural wastewater by Chlorella vulgaris NTM06. Khan M; Yoshida N Bioresour Technol; 2008 Feb; 99(3):575-82. PubMed ID: 17321741 [TBL] [Abstract][Full Text] [Related]
5. Bio-kinetic analysis on treatment of textile dye wastewater using anaerobic batch reactor. Gnanapragasam G; Senthilkumar M; Arutchelvan V; Velayutham T; Nagarajan S Bioresour Technol; 2011 Jan; 102(2):627-32. PubMed ID: 20800478 [TBL] [Abstract][Full Text] [Related]
6. Biosorption of C.I. Direct Blue 199 from aqueous solution by nonviable Aspergillus niger. Xiong XJ; Meng XJ; Zheng TL J Hazard Mater; 2010 Mar; 175(1-3):241-6. PubMed ID: 19879044 [TBL] [Abstract][Full Text] [Related]
7. Aerated treatment pond technology with biofilm promoting mats for the bioremediation of benzene, MTBE and ammonium contaminated groundwater. Jechalke S; Vogt C; Reiche N; Franchini AG; Borsdorf H; Neu TR; Richnow HH Water Res; 2010 Mar; 44(6):1785-96. PubMed ID: 20074770 [TBL] [Abstract][Full Text] [Related]
8. Cultivation of microalgae (Oscillatoria okeni and Chlorella vulgaris) using tilapia-pond effluent and a comparison of their biomass removal efficiency. Attasat S; Wanichpongpan P; Ruenglertpanyakul W Water Sci Technol; 2013; 67(2):271-7. PubMed ID: 23168623 [TBL] [Abstract][Full Text] [Related]
9. Use of ozone in a pilot-scale plant for textile wastewater pre-treatment: physico-chemical efficiency, degradation by-products identification and environmental toxicity of treated wastewater. Somensi CA; Simionatto EL; Bertoli SL; Wisniewski A; Radetski CM J Hazard Mater; 2010 Mar; 175(1-3):235-40. PubMed ID: 19879043 [TBL] [Abstract][Full Text] [Related]
10. Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Feng Y; Li C; Zhang D Bioresour Technol; 2011 Jan; 102(1):101-5. PubMed ID: 20620053 [TBL] [Abstract][Full Text] [Related]
11. Biological and oxidative treatment of cotton textile dye-bath effluents by fixed and fluidized bed reactors. Baban A; Yediler A; Avaz G; Hostede SS Bioresour Technol; 2010 Feb; 101(4):1147-52. PubMed ID: 19822422 [TBL] [Abstract][Full Text] [Related]
12. Influence of cetyltrimethyl ammonium bromide on nutrient uptake and cell responses of Chlorella vulgaris. Liang Z; Ge F; Zeng H; Xu Y; Peng F; Wong M Aquat Toxicol; 2013 Aug; 138-139():81-7. PubMed ID: 23721850 [TBL] [Abstract][Full Text] [Related]
13. Semi-continuous cultivation of Chlorella vulgaris for treating undigested and digested dairy manures. Wang L; Wang Y; Chen P; Ruan R Appl Biochem Biotechnol; 2010 Dec; 162(8):2324-32. PubMed ID: 20567935 [TBL] [Abstract][Full Text] [Related]
14. Removal of colour and COD from synthetic textile wastewaters using O3, PAC, H2O2 and HCO3-. Oguz E; Keskinler B J Hazard Mater; 2008 Mar; 151(2-3):753-60. PubMed ID: 17703876 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the efficacy of upflow anaerobic sludge blanket reactor in removal of colour and reduction of COD in real textile wastewater. Somasiri W; Li XF; Ruan WQ; Jian C Bioresour Technol; 2008 Jun; 99(9):3692-9. PubMed ID: 17719776 [TBL] [Abstract][Full Text] [Related]
16. Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies. Akhtar N; Iqbal J; Iqbal M J Hazard Mater; 2004 Apr; 108(1-2):85-94. PubMed ID: 15081166 [TBL] [Abstract][Full Text] [Related]
17. Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Gokhale SV; Jyoti KK; Lele SS Bioresour Technol; 2008 Jun; 99(9):3600-8. PubMed ID: 17900893 [TBL] [Abstract][Full Text] [Related]
18. Characteristics of developed granules containing selected decolourising bacteria for the degradation of textile wastewater. Ibrahim Z; Amin MF; Yahya A; Aris A; Muda K Water Sci Technol; 2010; 61(5):1279-88. PubMed ID: 20220250 [TBL] [Abstract][Full Text] [Related]
19. Aerobic decolourization of the indigo dye-containing textile wastewater using continuous combined bioreactors. Khelifi E; Gannoun H; Touhami Y; Bouallagui H; Hamdi M J Hazard Mater; 2008 Apr; 152(2):683-9. PubMed ID: 17825985 [TBL] [Abstract][Full Text] [Related]
20. Characterisation of microbial flocs formed from raw textile wastewater in aerobic biofilm reactor (ABR). Ibrahim Z; Amin MF; Yahya A; Aris A; Umor NA; Muda K; Sofian NS Water Sci Technol; 2009; 60(3):683-8. PubMed ID: 19657163 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]