BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 20547147)

  • 1. Differential activation of canonical Wnt signaling determines cranial sutures fate: a novel mechanism for sagittal suture craniosynostosis.
    Behr B; Longaker MT; Quarto N
    Dev Biol; 2010 Aug; 344(2):922-40. PubMed ID: 20547147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absence of endochondral ossification and craniosynostosis in posterior frontal cranial sutures of Axin2(-/-) mice.
    Behr B; Longaker MT; Quarto N
    PLoS One; 2013; 8(8):e70240. PubMed ID: 23936395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional differentiation of cranial suture-associated dura mater in vivo and in vitro: implications for suture fusion and patency.
    Greenwald JA; Mehrara BJ; Spector JA; Warren SM; Crisera FE; Fagenholz PJ; Bouletreau PJ; Longaker MT
    J Bone Miner Res; 2000 Dec; 15(12):2413-30. PubMed ID: 11127206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Craniosynostosis of coronal suture in twist1 mice occurs through endochondral ossification recapitulating the physiological closure of posterior frontal suture.
    Behr B; Longaker MT; Quarto N
    Front Physiol; 2011; 2():37. PubMed ID: 21811467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dysregulated PDGFRα signaling alters coronal suture morphogenesis and leads to craniosynostosis through endochondral ossification.
    He F; Soriano P
    Development; 2017 Nov; 144(21):4026-4036. PubMed ID: 28947535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ex vivo model of cranial suture morphogenesis and fate.
    Slater BJ; Lenton KA; James A; Longaker MT
    Cells Tissues Organs; 2009; 190(6):336-46. PubMed ID: 19590164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased bone formation and osteoblastic cell phenotype in premature cranial suture ossification (craniosynostosis).
    De Pollack C; Renier D; Hott M; Marie PJ
    J Bone Miner Res; 1996 Mar; 11(3):401-7. PubMed ID: 8852951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial regulation of gene expression in nonsyndromic sagittal craniosynostosis.
    Cyprus GN; Overlin JW; Vega RA; Ritter AM; Olivares-Navarrete R
    J Neurosurg Pediatr; 2018 Dec; 22(6):620-626. PubMed ID: 30215585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cranial deformation in craniosynostosis. A new explanation.
    Delashaw JB; Persing JA; Jane JA
    Neurosurg Clin N Am; 1991 Jul; 2(3):611-20. PubMed ID: 1821307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sutural biology and the correlates of craniosynostosis.
    Cohen MM
    Am J Med Genet; 1993 Oct; 47(5):581-616. PubMed ID: 8266985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force-induced craniosynostosis via paracrine signaling in the murine sagittal suture.
    Oppenheimer AJ; Rhee ST; Goldstein SA; Buchman SR
    J Craniofac Surg; 2012 Mar; 23(2):573-7. PubMed ID: 22446418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cranial sutures as intramembranous bone growth sites.
    Opperman LA
    Dev Dyn; 2000 Dec; 219(4):472-85. PubMed ID: 11084647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue origins and interactions in the mammalian skull vault.
    Jiang X; Iseki S; Maxson RE; Sucov HM; Morriss-Kay GM
    Dev Biol; 2002 Jan; 241(1):106-16. PubMed ID: 11784098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibroblast growth factors lead to increased Msx2 expression and fusion in calvarial sutures.
    Ignelzi MA; Wang W; Young AT
    J Bone Miner Res; 2003 Apr; 18(4):751-9. PubMed ID: 12674336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies in cranial suture biology: Part I. Increased immunoreactivity for TGF-beta isoforms (beta 1, beta 2, and beta 3) during rat cranial suture fusion.
    Roth DA; Longaker MT; McCarthy JG; Rosen DM; McMullen HF; Levine JP; Sung J; Gold LI
    J Bone Miner Res; 1997 Mar; 12(3):311-21. PubMed ID: 9076573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skeletal stem and progenitor cells maintain cranial suture patency and prevent craniosynostosis.
    Menon S; Salhotra A; Shailendra S; Tevlin R; Ransom RC; Januszyk M; Chan CKF; Behr B; Wan DC; Longaker MT; Quarto N
    Nat Commun; 2021 Jul; 12(1):4640. PubMed ID: 34330896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BMP9 induces osteogenesis and adipogenesis in the immortalized human cranial suture progenitors from the patent sutures of craniosynostosis patients.
    Song D; Zhang F; Reid RR; Ye J; Wei Q; Liao J; Zou Y; Fan J; Ma C; Hu X; Qu X; Chen L; Li L; Yu Y; Yu X; Zhang Z; Zhao C; Zeng Z; Zhang R; Yan S; Wu T; Wu X; Shu Y; Lei J; Li Y; Zhang W; Wang J; Lee MJ; Wolf JM; Huang D; He TC
    J Cell Mol Med; 2017 Nov; 21(11):2782-2795. PubMed ID: 28470873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell mixing at a neural crest-mesoderm boundary and deficient ephrin-Eph signaling in the pathogenesis of craniosynostosis.
    Merrill AE; Bochukova EG; Brugger SM; Ishii M; Pilz DT; Wall SA; Lyons KM; Wilkie AO; Maxson RE
    Hum Mol Genet; 2006 Apr; 15(8):1319-28. PubMed ID: 16540516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smad7 modulates TGFβ signaling during cranial suture development to maintain suture patency.
    Zhou H; Zou S; Lan Y; Fei W; Jiang R; Hu J
    J Bone Miner Res; 2014 Mar; 29(3):716-24. PubMed ID: 23959527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A molecular analysis of the isolated rat posterior frontal and sagittal sutures: differences in gene expression.
    Spector JA; Mehrara BJ; Greenwald JA; Saadeh PB; Steinbrech DS; Smith LP; Longaker MT
    Plast Reconstr Surg; 2000 Sep; 106(4):852-61; discussion 862-7. PubMed ID: 11007400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.