These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 20547201)
1. Thermostable properties of the periplasmic selenate reductase from Thauera selenatis. Dridge EJ; Butler CS Biochimie; 2010 Oct; 92(10):1268-73. PubMed ID: 20547201 [TBL] [Abstract][Full Text] [Related]
2. Investigation of the redox centres of periplasmic selenate reductase from Thauera selenatis by EPR spectroscopy. Dridge EJ; Watts CA; Jepson BJ; Line K; Santini JM; Richardson DJ; Butler CS Biochem J; 2007 Nov; 408(1):19-28. PubMed ID: 17688424 [TBL] [Abstract][Full Text] [Related]
3. Cloning and sequencing of the genes encoding the periplasmic-cytochrome B-containing selenate reductase of Thauera selenatis. Krafft T; Bowen A; Theis F; Macy JM DNA Seq; 2000; 10(6):365-77. PubMed ID: 10826693 [TBL] [Abstract][Full Text] [Related]
4. Biomineralization of selenium by the selenate-respiring bacterium Thauera selenatis. Butler CS; Debieux CM; Dridge EJ; Splatt P; Wright M Biochem Soc Trans; 2012 Dec; 40(6):1239-43. PubMed ID: 23176461 [TBL] [Abstract][Full Text] [Related]
5. Purification and characterization of the selenate reductase from Thauera selenatis. Schröder I; Rech S; Krafft T; Macy JM J Biol Chem; 1997 Sep; 272(38):23765-8. PubMed ID: 9295321 [TBL] [Abstract][Full Text] [Related]
6. Quinol-cytochrome c oxidoreductase and cytochrome c4 mediate electron transfer during selenate respiration in Thauera selenatis. Lowe EC; Bydder S; Hartshorne RS; Tape HL; Dridge EJ; Debieux CM; Paszkiewicz K; Singleton I; Lewis RJ; Santini JM; Richardson DJ; Butler CS J Biol Chem; 2010 Jun; 285(24):18433-42. PubMed ID: 20388716 [TBL] [Abstract][Full Text] [Related]
7. The terminal reductases for selenate and nitrate respiration in Thauera selenatis are two distinct enzymes. Rech SA; Macy JM J Bacteriol; 1992 Nov; 174(22):7316-20. PubMed ID: 1429454 [TBL] [Abstract][Full Text] [Related]
8. Properties of the periplasmic nitrate reductases from Paracoccus pantotrophus and Escherichia coli after growth in tungsten-supplemented media. Gates AJ; Hughes RO; Sharp SR; Millington PD; Nilavongse A; Cole JA; Leach ER; Jepson B; Richardson DJ; Butler CS FEMS Microbiol Lett; 2003 Mar; 220(2):261-9. PubMed ID: 12670690 [TBL] [Abstract][Full Text] [Related]
9. Selenate reduction by Enterobacter cloacae SLD1a-1 is catalysed by a molybdenum-dependent membrane-bound enzyme that is distinct from the membrane-bound nitrate reductase. Watts CA; Ridley H; Condie KL; Leaver JT; Richardson DJ; Butler CS FEMS Microbiol Lett; 2003 Nov; 228(2):273-9. PubMed ID: 14638434 [TBL] [Abstract][Full Text] [Related]
10. X-ray absorption spectroscopy of selenate reductase. Maher MJ; Santini J; Pickering IJ; Prince RC; Macy JM; George GN Inorg Chem; 2004 Jan; 43(2):402-4. PubMed ID: 14730999 [TBL] [Abstract][Full Text] [Related]
11. Adaptation to a high-tungsten environment: Pyrobaculum aerophilum contains an active tungsten nitrate reductase. de Vries S; Momcilovic M; Strampraad MJ; Whitelegge JP; Baghai A; Schröder I Biochemistry; 2010 Nov; 49(45):9911-21. PubMed ID: 20863064 [TBL] [Abstract][Full Text] [Related]
12. Crystallization and preliminary X-ray analysis of the selenate reductase from Thauera selenatis. Maher MJ; Macy JM Acta Crystallogr D Biol Crystallogr; 2002 Apr; 58(Pt 4):706-8. PubMed ID: 11914503 [TBL] [Abstract][Full Text] [Related]
13. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina. Simpson PJ; Codd R Biochem Biophys Res Commun; 2011 Nov; 414(4):783-8. PubMed ID: 22005463 [TBL] [Abstract][Full Text] [Related]
14. Analogue reaction systems of selenate reductase. Wang JJ; Tessier C; Holm RH Inorg Chem; 2006 Apr; 45(7):2979-88. PubMed ID: 16562954 [TBL] [Abstract][Full Text] [Related]
15. Activation in vitro of respiratory nitrate reductase of Escherichia coli K12 grown in the presence of tungstate. Involvement of molybdenum cofactor. Saracino L; Violet M; Boxer DH; Giordano G Eur J Biochem; 1986 Aug; 158(3):483-90. PubMed ID: 3525161 [TBL] [Abstract][Full Text] [Related]
16. Properties of a thermostable nitrate reductase from the hyperthermophilic archaeon Pyrobaculum aerophilum. Afshar S; Johnson E; de Vries S; Schröder I J Bacteriol; 2001 Oct; 183(19):5491-5. PubMed ID: 11544209 [TBL] [Abstract][Full Text] [Related]
17. Oxo transfer reactions mediated by bis(dithiolene)tungsten analogues of the active sites of molybdoenzymes in the DMSO reductase family: comparative reactivity of tungsten and molybdenum. Sung KM; Holm RH J Am Chem Soc; 2001 Mar; 123(9):1931-43. PubMed ID: 11456814 [TBL] [Abstract][Full Text] [Related]
18. Resolution of distinct membrane-bound enzymes from Enterobacter cloacae SLD1a-1 that are responsible for selective reduction of nitrate and selenate oxyanions. Ridley H; Watts CA; Richardson DJ; Butler CS Appl Environ Microbiol; 2006 Aug; 72(8):5173-80. PubMed ID: 16885262 [TBL] [Abstract][Full Text] [Related]
19. Major Mo(V) EPR signature of Rhodobacter sphaeroides periplasmic nitrate reductase arising from a dead-end species that activates upon reduction. Relation to other molybdoenzymes from the DMSO reductase family. Fourmond V; Burlat B; Dementin S; Arnoux P; Sabaty M; Boiry S; Guigliarelli B; Bertrand P; Pignol D; Léger C J Phys Chem B; 2008 Dec; 112(48):15478-86. PubMed ID: 19006273 [TBL] [Abstract][Full Text] [Related]
20. Models for molybdenum coordination during the catalytic cycle of periplasmic nitrate reductase from Paracoccus denitrificans derived from EPR and EXAFS spectroscopy. Butler CS; Charnock JM; Bennett B; Sears HJ; Reilly AJ; Ferguson SJ; Garner CD; Lowe DJ; Thomson AJ; Berks BC; Richardson DJ Biochemistry; 1999 Jul; 38(28):9000-12. PubMed ID: 10413473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]