These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
432 related articles for article (PubMed ID: 20547353)
1. Low-cost fermentation medium for alkaline protease production by Bacillus mojavensis A21 using hulled grain of wheat and sardinella peptone. Haddar A; Fakhfakh-Zouari N; Hmidet N; Frikha F; Nasri M; Kamoun AS J Biosci Bioeng; 2010 Sep; 110(3):288-94. PubMed ID: 20547353 [TBL] [Abstract][Full Text] [Related]
2. Optimization of alkaline protease production by Aspergillus clavatus ES1 in Mirabilis jalapa tuber powder using statistical experimental design. Hajji M; Rebai A; Gharsallah N; Nasri M Appl Microbiol Biotechnol; 2008 Jul; 79(6):915-23. PubMed ID: 18481054 [TBL] [Abstract][Full Text] [Related]
3. Fibrinolytic enzymes from a newly isolated marine bacterium Bacillus subtilis A26: characterization and statistical media optimization. Agrebi R; Haddar A; Hajji M; Frikha F; Manni L; Jellouli K; Nasri M Can J Microbiol; 2009 Sep; 55(9):1049-61. PubMed ID: 19898547 [TBL] [Abstract][Full Text] [Related]
4. Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett-Burman and response surface methodological approaches. Reddy LV; Wee YJ; Yun JS; Ryu HW Bioresour Technol; 2008 May; 99(7):2242-9. PubMed ID: 17596938 [TBL] [Abstract][Full Text] [Related]
5. Optimization of acid protease production by Aspergillus niger I1 on shrimp peptone using statistical experimental design. Siala R; Frikha F; Mhamdi S; Nasri M; Kamoun AS ScientificWorldJournal; 2012; 2012():564932. PubMed ID: 22593695 [TBL] [Abstract][Full Text] [Related]
6. Statistical modeling and optimization of alkaline protease production from a newly isolated alkalophilic Bacillus species BGS using response surface methodology and genetic algorithm. Moorthy IM; Baskar R Prep Biochem Biotechnol; 2013; 43(3):293-314. PubMed ID: 23379276 [TBL] [Abstract][Full Text] [Related]
7. Response surface optimization of the critical medium components for the production of alkaline protease by a newly isolated Bacillus sp. Adinarayana K; Ellaiah P J Pharm Pharm Sci; 2002; 5(3):272-8. PubMed ID: 12553896 [TBL] [Abstract][Full Text] [Related]
8. Medium optimization for ethanol production with Clostridium autoethanogenum with carbon monoxide as sole carbon source. Guo Y; Xu J; Zhang Y; Xu H; Yuan Z; Li D Bioresour Technol; 2010 Nov; 101(22):8784-9. PubMed ID: 20619639 [TBL] [Abstract][Full Text] [Related]
9. Alkaline xylanases from Bacillus mojavensis A21: production and generation of xylooligosaccharides. Haddar A; Driss D; Frikha F; Ellouz-Chaabouni S; Nasri M Int J Biol Macromol; 2012 Nov; 51(4):647-56. PubMed ID: 22771926 [TBL] [Abstract][Full Text] [Related]
10. Application of statistical experimental design to optimize culture requirements of Aspergillus sp. Zh-26 producing xylanase for degradation of arabinoxylans in mashing. Li Y; Liu Z; Cui F; Xu Y; Zhao H; Liu Z J Food Sci; 2007 Jun; 72(5):E320-9. PubMed ID: 17995733 [TBL] [Abstract][Full Text] [Related]
11. Medium optimization for the production of cyclic adenosine 3',5'-monophosphate by Microbacterium sp. no. 205 using response surface methodology. Chen XC; Bai JX; Cao JM; Li ZJ; Xiong J; Zhang L; Hong Y; Ying HJ Bioresour Technol; 2009 Jan; 100(2):919-24. PubMed ID: 18778935 [TBL] [Abstract][Full Text] [Related]
12. Optimization of culture conditions for production of cis-epoxysuccinic acid hydrolase using response surface methodology. Li X; Xu T; Ma X; Guo K; Kai L; Zhao Y; Jia X; Ma Y Bioresour Technol; 2008 Sep; 99(13):5391-6. PubMed ID: 18083551 [TBL] [Abstract][Full Text] [Related]
13. Modelling and optimization of fermentation factors for enhancement of alkaline protease production by isolated Bacillus circulans using feed-forward neural network and genetic algorithm. Rao ChS; Sathish T; Mahalaxmi M; Laxmi GS; Rao RS; Prakasham RS J Appl Microbiol; 2008 Mar; 104(3):889-98. PubMed ID: 17953681 [TBL] [Abstract][Full Text] [Related]
14. An economic approach for L-(+) lactic acid fermentation by Lactobacillus amylophilus GV6 using inexpensive carbon and nitrogen sources. Altaf M; Venkateshwar M; Srijana M; Reddy G J Appl Microbiol; 2007 Aug; 103(2):372-80. PubMed ID: 17650197 [TBL] [Abstract][Full Text] [Related]
15. Xylanase production using agro-residue in solid-state fermentation from Bacillus pumilus ASH for biodelignification of wheat straw pulp. Garg G; Mahajan R; Kaur A; Sharma J Biodegradation; 2011 Nov; 22(6):1143-54. PubMed ID: 21437760 [TBL] [Abstract][Full Text] [Related]
16. Influence of medium components and fermentation conditions on the production of bacteriocin(s) by Bacillus licheniformis AnBa9. Anthony T; Rajesh T; Kayalvizhi N; Gunasekaran P Bioresour Technol; 2009 Jan; 100(2):872-7. PubMed ID: 18762415 [TBL] [Abstract][Full Text] [Related]
17. Optimization of the fermentation media for sophorolipid production from Candida bombicola ATCC 22214 using a simplex centroid design. Rispoli FJ; Badia D; Shah V Biotechnol Prog; 2010; 26(4):938-44. PubMed ID: 20205261 [TBL] [Abstract][Full Text] [Related]
18. Optimization of cyclodextrin glucanotransferase production from Bacillus clausii E16 in submerged fermentation using response surface methodology. Alves-Prado HF; Bocchini DA; Gomes E; Baida LC; Contiero J; Roberto IC; Da Silva R Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):27-40. PubMed ID: 18478374 [TBL] [Abstract][Full Text] [Related]
19. Optimization of fermentation conditions for production of anti-TMV extracellular ribonuclease by Bacillus cereus using response surface methodology. Zhou WW; He YL; Niu TG; Zhong JJ Bioprocess Biosyst Eng; 2010 Aug; 33(6):657-63. PubMed ID: 19466461 [TBL] [Abstract][Full Text] [Related]
20. Medium factor optimization and fermentation kinetics for phenazine-1-carboxylic acid production by Pseudomonas sp. M18G. He L; Xu YQ; Zhang XH Biotechnol Bioeng; 2008 Jun; 100(2):250-9. PubMed ID: 18078294 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]