These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2054740)

  • 41. Mechanisms of muscle fatigue in intense exercise.
    Green HJ
    J Sports Sci; 1997 Jun; 15(3):247-56. PubMed ID: 9232550
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Properties of single calcium-activated potassium channels in cultured rat muscle.
    Barrett JN; Magleby KL; Pallotta BS
    J Physiol; 1982 Oct; 331():211-30. PubMed ID: 6296366
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effect of intracellular pH on ATP-dependent potassium channels of frog skeletal muscle.
    Davies NW; Standen NB; Stanfield PR
    J Physiol; 1992 Jan; 445():549-68. PubMed ID: 1501145
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Potassium loss from skeletal muscle during exercise in man: a radioisotope study.
    Qayyum MS; Freemantle CA; Carey CJ; Page BC; Soper N; Paterson DJ; Robbins PA
    Exp Physiol; 1993 Sep; 78(5):639-48. PubMed ID: 8240795
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Factors contributing to increased muscle fatigue with beta-blockers.
    McKelvie RS; Jones NL; Heigenhauser GJ
    Can J Physiol Pharmacol; 1991 Feb; 69(2):254-61. PubMed ID: 1675929
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modulation of muscle contractility during fatigue and recovery by ATP sensitive potassium channel.
    Renaud JM; Gramolini A; Light P; Comtois A
    Acta Physiol Scand; 1996 Mar; 156(3):203-12. PubMed ID: 8729680
    [TBL] [Abstract][Full Text] [Related]  

  • 47. K+ balance in humans during exercise.
    Hallén J
    Acta Physiol Scand; 1996 Mar; 156(3):279-86. PubMed ID: 8729688
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Excitability of the T-tubular system in rat skeletal muscle: roles of K+ and Na+ gradients and Na+-K+ pump activity.
    Nielsen OB; Ørtenblad N; Lamb GD; Stephenson DG
    J Physiol; 2004 May; 557(Pt 1):133-46. PubMed ID: 15034125
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Blocking ATP-sensitive K+ channel during metabolic inhibition impairs muscle contractility.
    Gramolini A; Renaud JM
    Am J Physiol; 1997 Jun; 272(6 Pt 1):C1936-46. PubMed ID: 9227423
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Composition of vacuoles and sarcoplasmic reticulum in fatigued muscle: electron probe analysis.
    Gonzalez-Serratos H; Somlyo AV; McClellan G; Shuman H; Borrero LM; Somlyo AP
    Proc Natl Acad Sci U S A; 1978 Mar; 75(3):1329-33. PubMed ID: 26054
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modulation of ATP-sensitive K+ channels in skeletal muscle by intracellular protons.
    Davies NW
    Nature; 1990 Jan; 343(6256):375-7. PubMed ID: 2153936
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sodium-potassium pump inhibitors increase neuronal excitability in the rat hippocampal slice: role of a Ca2+-dependent conductance.
    McCarren M; Alger BE
    J Neurophysiol; 1987 Feb; 57(2):496-509. PubMed ID: 2435860
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sarcoplasmic reticulum Ca2+ release and depletion fail to affect sarcolemmal ion channel activity in mouse skeletal muscle.
    Allard B; Couchoux H; Pouvreau S; Jacquemond V
    J Physiol; 2006 Aug; 575(Pt 1):69-81. PubMed ID: 16777939
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Additive protective effects of the addition of lactic acid and adrenaline on excitability and force in isolated rat skeletal muscle depressed by elevated extracellular K+.
    de Paoli FV; Overgaard K; Pedersen TH; Nielsen OB
    J Physiol; 2007 Jun; 581(Pt 2):829-39. PubMed ID: 17347268
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A voltage-dependent gate in series with the inwardly rectifying potassium channel in frog striated muscle.
    Mancinelli E; Peres A
    J Physiol; 1979 Aug; 293():301-18. PubMed ID: 315463
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Changes in interstitial K+ and pH during exercise: implications for blood flow regulation.
    Juel C
    Appl Physiol Nutr Metab; 2007 Oct; 32(5):846-51. PubMed ID: 18059608
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Zinc-induced changes in ionic currents of clonal rat pancreatic -cells: activation of ATP-sensitive K+ channels.
    Bloc A; Cens T; Cruz H; Dunant Y
    J Physiol; 2000 Dec; 529 Pt 3(Pt 3):723-34. PubMed ID: 11118501
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Low-conductance states of K+ channels in adult mouse skeletal muscle.
    Weik R; Lönnendonker U; Neumcke B
    Biochim Biophys Acta; 1989 Aug; 983(2):127-34. PubMed ID: 2758054
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanisms of cellular synchronization in the vascular wall. Mechanisms of vasomotion.
    Matchkov VV
    Dan Med Bull; 2010 Oct; 57(10):B4191. PubMed ID: 21040688
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reconstitution of the ATP-sensitive potassium channel of skeletal muscle. Activation by a G protein-dependent process.
    Parent L; Coronado R
    J Gen Physiol; 1989 Sep; 94(3):445-63. PubMed ID: 2514254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.