These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

42 related articles for article (PubMed ID: 2054741)

  • 1. Post-exercise Supplementation of Sodium Bicarbonate Improves Acid Base Balance Recovery and Subsequent High-Intensity Boxing Specific Performance.
    Gough LA; Rimmer S; Sparks SA; McNaughton LR; Higgins MF
    Front Nutr; 2019; 6():155. PubMed ID: 31632978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium citrate ingestion protocol impacts induced alkalosis, gastrointestinal symptoms, and palatability.
    Urwin CS; Snow RJ; Orellana L; Condo D; Wadley GD; Carr AJ
    Physiol Rep; 2019 Oct; 7(19):e14216. PubMed ID: 31602822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limit to steady-state aerobic power of skeletal muscles.
    Paglietti A
    J Biol Phys; 2018 Dec; 44(4):619-646. PubMed ID: 30280281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The excitation-contraction coupling mechanism in skeletal muscle.
    Calderón JC; Bolaños P; Caputo C
    Biophys Rev; 2014 Mar; 6(1):133-160. PubMed ID: 28509964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β2-adrenergic stimulation enhances Ca2+ release and contractile properties of skeletal muscles, and counteracts exercise-induced reductions in Na+-K+-ATPase Vmax in trained men.
    Hostrup M; Kalsen A; Ortenblad N; Juel C; Mørch K; Rzeppa S; Karlsson S; Backer V; Bangsbo J
    J Physiol; 2014 Dec; 592(24):5445-59. PubMed ID: 25344552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulmonary gas exchange and acid-base balance during exercise.
    Stickland MK; Lindinger MI; Olfert IM; Heigenhauser GJ; Hopkins SR
    Compr Physiol; 2013 Apr; 3(2):693-739. PubMed ID: 23720327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volume regulation in mammalian skeletal muscle: the role of sodium-potassium-chloride cotransporters during exposure to hypertonic solutions.
    Lindinger MI; Leung M; Trajcevski KE; Hawke TJ
    J Physiol; 2011 Jun; 589(Pt 11):2887-99. PubMed ID: 21486779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle fatigue in males and females during multiple-sprint exercise.
    Billaut F; Bishop D
    Sports Med; 2009; 39(4):257-78. PubMed ID: 19317516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do multiple ionic interactions contribute to skeletal muscle fatigue?
    Cairns SP; Lindinger MI
    J Physiol; 2008 Sep; 586(17):4039-54. PubMed ID: 18591187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maternal-neonatal erythrocyte membrane Na(+), K (+)-ATPase and Mg (2+)-ATPase activities in relation to the mode of delivery.
    Vlachos DG; Schulpis KH; Parthimos T; Mesogitis S; Vlachos GD; Antsaklis A; Tsakiris S
    Eur J Appl Physiol; 2008 Jul; 103(5):501-8. PubMed ID: 18421470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of repetitive stimulation on cell volume and its relationship to membrane potential in amphibian skeletal muscle.
    Usher-Smith JA; Skepper JN; Fraser JA; Huang CL
    Pflugers Arch; 2006 May; 452(2):231-9. PubMed ID: 16404610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model for the behaviour of compartmental CO(2) stores during incremental exercise.
    Rowlands DS
    Eur J Appl Physiol; 2005 Mar; 93(5-6):555-68. PubMed ID: 15599589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sprint training enhances ionic regulation during intense exercise in men.
    McKenna MJ; Heigenhauser GJ; McKelvie RS; MacDougall JD; Jones NL
    J Physiol; 1997 Jun; 501 ( Pt 3)(Pt 3):687-702. PubMed ID: 9218228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caffeine and endurance performance.
    Tarnopolsky MA
    Sports Med; 1994 Aug; 18(2):109-25. PubMed ID: 9132918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relation between extracellular [K+], membrane potential and contraction in rat soleus muscle: modulation by the Na+-K+ pump.
    Cairns SP; Flatman JA; Clausen T
    Pflugers Arch; 1995 Oct; 430(6):909-15. PubMed ID: 8594543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles of ionic processes in muscular fatigue during intense exercise.
    McKenna MJ
    Sports Med; 1992 Feb; 13(2):134-45. PubMed ID: 1373245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The roles of ion fluxes in skeletal muscle fatigue.
    Lindinger MI; Heigenhauser GJ
    Can J Physiol Pharmacol; 1991 Feb; 69(2):246-53. PubMed ID: 2054741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of alkalosis on muscle ions at rest and with intense exercise.
    Lindinger MI; Heigenhauser GJ; Spriet LL
    Can J Physiol Pharmacol; 1990 Jul; 68(7):820-9. PubMed ID: 2383797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of lactate and other ions in inactive skeletal muscle: influence of hyperkalemic lactacidosis.
    Chin ER; Lindinger MI; Heigenhauser GJ
    Can J Physiol Pharmacol; 1997 Dec; 75(12):1375-86. PubMed ID: 9534949
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.