These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 20547593)
1. A dumbbell probe-mediated rolling circle amplification strategy for highly sensitive microRNA detection. Zhou Y; Huang Q; Gao J; Lu J; Shen X; Fan C Nucleic Acids Res; 2010 Aug; 38(15):e156. PubMed ID: 20547593 [TBL] [Abstract][Full Text] [Related]
2. Ultrasensitive assay based on a combined cascade amplification by nicking-mediated rolling circle amplification and symmetric strand-displacement amplification. Xu H; Zhang Y; Zhang S; Sun M; Li W; Jiang Y; Wu ZS Anal Chim Acta; 2019 Jan; 1047():172-178. PubMed ID: 30567647 [TBL] [Abstract][Full Text] [Related]
3. Hairpin/DNA ring ternary probes for highly sensitive detection and selective discrimination of microRNA among family members. Liu X; Zou M; Li D; Yuan R; Xiang Y Anal Chim Acta; 2019 Oct; 1076():138-143. PubMed ID: 31203958 [TBL] [Abstract][Full Text] [Related]
4. Dumbbell probe-mediated cascade isothermal amplification: a novel strategy for label-free detection of microRNAs and its application to real sample assay. Bi S; Cui Y; Li L Anal Chim Acta; 2013 Jan; 760():69-74. PubMed ID: 23265735 [TBL] [Abstract][Full Text] [Related]
5. A fishhook probe-based rolling circle amplification (FP-RCA) assay for efficient isolation and detection of microRNA without total RNA extraction. Lu W; Wang Y; Song S; Chen C; Yao B; Wang M Analyst; 2018 Oct; 143(20):5046-5053. PubMed ID: 30238116 [TBL] [Abstract][Full Text] [Related]
6. Rapid and ultrasensitive miRNA detection by combining endonuclease reactions in a rolling circle amplification (RCA)-based hairpin DNA fluorescent assay. Lee YJ; Jeong JY; Do JY; Hong CA Anal Bioanal Chem; 2023 Apr; 415(10):1991-1999. PubMed ID: 36853410 [TBL] [Abstract][Full Text] [Related]
7. Nicking-enhanced rolling circle amplification for sensitive fluorescent detection of cancer-related microRNAs. Gao Z; Wu C; Lv S; Wang C; Zhang N; Xiao S; Han Y; Xu H; Zhang Y; Li F; Lyu J; Shen Z Anal Bioanal Chem; 2018 Oct; 410(26):6819-6826. PubMed ID: 30066196 [TBL] [Abstract][Full Text] [Related]
8. Ultrasensitive detection of miRNA via one-step rolling circle-quantitative PCR (RC-qPCR). Xu M; Ye J; Yang D; Abdullah Al-Maskri AA; Hu H; Jung C; Cai S; Zeng S Anal Chim Acta; 2019 Oct; 1077():208-215. PubMed ID: 31307711 [TBL] [Abstract][Full Text] [Related]
9. Triple-helix molecular-switch-actuated exponential rolling circular amplification for ultrasensitive fluorescence detection of miRNAs. Zhao Y; Wang Y; Liu S; Wang C; Liang J; Li S; Qu X; Zhang R; Yu J; Huang J Analyst; 2019 Aug; 144(17):5245-5253. PubMed ID: 31361292 [TBL] [Abstract][Full Text] [Related]
10. G-quadruplex fluorescent probe-mediated real-time rolling circle amplification strategy for highly sensitive microRNA detection. Jiang HX; Liang ZZ; Ma YH; Kong DM; Hong ZY Anal Chim Acta; 2016 Nov; 943():114-122. PubMed ID: 27769370 [TBL] [Abstract][Full Text] [Related]
11. A dumbell probe-mediated rolling circle amplification strategy for highly sensitive transcription factor detection. Li C; Qiu X; Hou Z; Deng K Biosens Bioelectron; 2015 Feb; 64():505-10. PubMed ID: 25299987 [TBL] [Abstract][Full Text] [Related]
12. Sensitive fluorescent detection of DNA methyltransferase using nicking endonuclease-mediated multiple primers-like rolling circle amplification. Huang J; Li XY; Du YC; Zhang LN; Liu KK; Zhu LN; Kong DM Biosens Bioelectron; 2017 May; 91():417-423. PubMed ID: 28063390 [TBL] [Abstract][Full Text] [Related]
13. MiRNA Detection Using a Rolling Circle Amplification and RNA-Cutting Allosteric Deoxyribozyme Dual Signal Amplification Strategy. Fang C; Ouyang P; Yang Y; Qing Y; Han J; Shang W; Chen Y; Du J Biosensors (Basel); 2021 Jul; 11(7):. PubMed ID: 34356693 [TBL] [Abstract][Full Text] [Related]
14. A dual-signal amplification strategy based on rolling circle amplification and APE1-assisted amplification for highly sensitive and specific miRNA analysis for early diagnosis of alzheimer's disease. Xie J; Chen J; Zhang Y; Li C; Liu P; Duan WJ; Chen JX; Chen J; Dai Z; Li M Talanta; 2024 May; 272():125747. PubMed ID: 38364557 [TBL] [Abstract][Full Text] [Related]
15. Ultrasensitive multiplexed microRNA quantification on encoded gel microparticles using rolling circle amplification. Chapin SC; Doyle PS Anal Chem; 2011 Sep; 83(18):7179-85. PubMed ID: 21812442 [TBL] [Abstract][Full Text] [Related]
16. Dual-Signal Amplification Strategy for Sensitive MicroRNA Detection Based on Rolling Circle Amplification and Enzymatic Repairing Amplification. Xiao F; Liu J; Guo Q; Du Z; Li H; Sun C; Du W ACS Omega; 2020 Dec; 5(50):32738-32743. PubMed ID: 33376911 [TBL] [Abstract][Full Text] [Related]
17. DNA nanostructures from palindromic rolling circle amplification for the fluorescent detection of cancer-related microRNAs. Xu H; Zhang S; Ouyang C; Wang Z; Wu D; Liu Y; Jiang Y; Wu ZS Talanta; 2019 Jan; 192():175-181. PubMed ID: 30348375 [TBL] [Abstract][Full Text] [Related]
18. Biomineralized Metal-Organic Framework Nanoparticles Enable Enzymatic Rolling Circle Amplification in Living Cells for Ultrasensitive MicroRNA Imaging. Zhang J; He M; Nie C; He M; Pan Q; Liu C; Hu Y; Yi J; Chen T; Chu X Anal Chem; 2019 Jul; 91(14):9049-9057. PubMed ID: 31274280 [TBL] [Abstract][Full Text] [Related]
19. A trifunctional split dumbbell probe coupled with ligation-triggered isothermal rolling circle amplification for label-free and sensitive detection of nicotinamide adenine dinucleotide. Meng YR; Zhang D; Zou X; Ma F; Kang Q; Zhang CY Talanta; 2021 Mar; 224():121962. PubMed ID: 33379129 [TBL] [Abstract][Full Text] [Related]
20. A label-free fluorescent enhancement nanosensor for ultrasensitive and highly selective detection of miRNA-378 through signal synergy amplification. Liu Z; Wang Y; Li J; Yuan Y; Wu X; Liu W; Liu Y Anal Chim Acta; 2019 Dec; 1087():86-92. PubMed ID: 31585570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]