These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 20547674)

  • 1. Changes in the force-velocity relationship of fatigued muscle: implications for power production and possible causes.
    Jones DA
    J Physiol; 2010 Aug; 588(Pt 16):2977-86. PubMed ID: 20547674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Change in contractile properties of human muscle in relationship to the loss of power and slowing of relaxation seen with fatigue.
    Jones DA; de Ruiter CJ; de Haan A
    J Physiol; 2006 Nov; 576(Pt 3):913-22. PubMed ID: 16916911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of cross-bridge compliance on the force-velocity relationship and muscle power output.
    Fenwick AJ; Wood AM; Tanner BCW
    PLoS One; 2017; 12(12):e0190335. PubMed ID: 29284062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slowed relaxation in fatigued skeletal muscle fibers of Xenopus and Mouse. Contribution of [Ca2+]i and cross-bridges.
    Westerblad H; Lännergren J; Allen DG
    J Gen Physiol; 1997 Mar; 109(3):385-99. PubMed ID: 9089444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in velocity of shortening, power output and relaxation rate during fatigue of rat medial gastrocnemius muscle.
    de Haan A; Jones DA; Sargeant AJ
    Pflugers Arch; 1989 Feb; 413(4):422-8. PubMed ID: 2928095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy turnover in relation to slowing of contractile properties during fatiguing contractions of the human anterior tibialis muscle.
    Jones DA; Turner DL; McIntyre DB; Newham DJ
    J Physiol; 2009 Sep; 587(Pt 17):4329-38. PubMed ID: 19596896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The measurement of force/velocity relationships of fresh and fatigued human adductor pollicis muscle.
    De Ruiter CJ; Jones DA; Sargeant AJ; De Haan A
    Eur J Appl Physiol Occup Physiol; 1999 Sep; 80(4):386-93. PubMed ID: 10483811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes of the force-velocity relation, isometric tension and relaxation rate during fatigue in intact, single fibres of Xenopus skeletal muscle.
    Westerblad H; Lännergren J
    J Muscle Res Cell Motil; 1994 Jun; 15(3):287-98. PubMed ID: 7929794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are Force Enhancement after Stretch and Muscle Fatigue Due to Effects of Elevated Inorganic Phosphate and Low Calcium on Cross Bridge Kinetics?
    Degens H; Jones DA
    Medicina (Kaunas); 2020 May; 56(5):. PubMed ID: 32443826
    [No Abstract]   [Full Text] [Related]  

  • 10. Effects of elevated H
    Sundberg CW; Hunter SK; Trappe SW; Smith CS; Fitts RH
    J Physiol; 2018 Sep; 596(17):3993-4015. PubMed ID: 29806714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is curvature of the force-velocity relationship affected by oxygen availability? Evidence from studies in ex vivo and in situ rat muscles.
    Kristensen AM; MacDougall KB; MacIntosh BR; Overgaard K
    Pflugers Arch; 2020 May; 472(5):597-608. PubMed ID: 32415461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peak power output is maintained in rabbit psoas and rat soleus single muscle fibers when CTP replaces ATP.
    Wahr PA; Metzger JM
    J Appl Physiol (1985); 1998 Jul; 85(1):76-83. PubMed ID: 9655758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force decline during fatigue is due to both a decrease in the force per individual cross-bridge and the number of cross-bridges.
    Nocella M; Colombini B; Benelli G; Cecchi G; Bagni MA; Bruton J
    J Physiol; 2011 Jul; 589(Pt 13):3371-81. PubMed ID: 21540343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatiguing stimulation increases curvature of the force-velocity relationship in isolated fast-twitch and slow-twitch rat muscles.
    Kristensen AM; Nielsen OB; Pedersen TH; Overgaard K
    J Exp Biol; 2019 Aug; 222(Pt 15):. PubMed ID: 31292165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low cell pH depresses peak power in rat skeletal muscle fibres at both 30 degrees C and 15 degrees C: implications for muscle fatigue.
    Knuth ST; Dave H; Peters JR; Fitts RH
    J Physiol; 2006 Sep; 575(Pt 3):887-99. PubMed ID: 16809373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-bridge cooperativity during isometric contraction and unloaded shortening of skeletal muscle.
    Barnett VA
    J Muscle Res Cell Motil; 2001; 22(5):415-23. PubMed ID: 11964067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The force-velocity relationship of human adductor pollicis muscle during stretch and the effects of fatigue.
    Ruiter CJ; Didden WJ; Jones DA; Haan AD
    J Physiol; 2000 Aug; 526 Pt 3(Pt 3):671-81. PubMed ID: 10922017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatigue and recovery of dynamic and steady-state performance in frog skeletal muscle.
    Syme DA; Tonks DM
    Am J Physiol Regul Integr Comp Physiol; 2004 May; 286(5):R916-26. PubMed ID: 14726426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of manipulating tetanic calcium on the curvature of the force-velocity relationship in isolated rat soleus muscles.
    Kristensen AM; Nielsen OB; Overgaard K
    Acta Physiol (Oxf); 2018 Mar; 222(3):. PubMed ID: 28972685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple causes of fatigue during shortening contractions in rat slow twitch skeletal muscle.
    Hortemo KH; Munkvik M; Lunde PK; Sejersted OM
    PLoS One; 2013; 8(8):e71700. PubMed ID: 23977116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.