These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 20547880)

  • 1. Programmable transdermal drug delivery of nicotine using carbon nanotube membranes.
    Wu J; Paudel KS; Strasinger C; Hammell D; Stinchcomb AL; Hinds BJ
    Proc Natl Acad Sci U S A; 2010 Jun; 107(26):11698-702. PubMed ID: 20547880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A preclinical evaluation of a programmable CNT membrane device for transdermal nicotine delivery in hairless Guinea pigs.
    Gulati GK; Berger LR; Hinds BJ
    J Control Release; 2019 Jan; 293():135-143. PubMed ID: 29990525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmable carbon nanotube membrane-based transdermal nicotine delivery with microdialysis validation assay.
    Gulati GK; Chen T; Hinds BJ
    Nanomedicine; 2017 Jan; 13(1):1-9. PubMed ID: 27438911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmable transdermal delivery of nicotine in hairless guinea pigs using carbon nanotube membrane pumps.
    Paudel KS; Wu J; Hinds BJ; Stinchcomb AL
    J Pharm Sci; 2012 Oct; 101(10):3823-32. PubMed ID: 22806243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmable transdermal clonidine delivery through voltage-gated carbon nanotube membranes.
    Strasinger C; Paudel KS; Wu J; Hammell D; Pinninti RR; Hinds BJ; Stinchcomb A
    J Pharm Sci; 2014 Jun; 103(6):1829-38. PubMed ID: 24788096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon Nanotube Membranes for use in the Transdermal Treatment of Nicotine Addiction and Opioid Withdrawal Symptoms.
    Strasinger CL; Scheff NN; Wu J; Hinds BJ; Stinchcomb AL
    Subst Abuse; 2009 Mar; 3():31-39. PubMed ID: 20582253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrically controlled nicotine delivery through Carbon nanotube membranes via electrochemical oxidation and nanofluidically enhanced electroosmotic flow.
    Gulati GK; Hinds BJ
    Biomed Microdevices; 2021 Sep; 23(4):48. PubMed ID: 34562167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Permeability test for transdermal and local therapeutic patches using Skin PAMPA method.
    Vizserálek G; Berkó S; Tóth G; Balogh R; Budai-Szűcs M; Csányi E; Sinkó B; Takács-Novák K
    Eur J Pharm Sci; 2015 Aug; 76():165-72. PubMed ID: 25957747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Mild Hyperthermia on Transdermal Absorption of Nicotine from Patches.
    Panda A; Sharma PK; Narasimha Murthy S
    AAPS PharmSciTech; 2019 Jan; 20(2):77. PubMed ID: 30635802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transdermal Nicotine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy as an aid to smoking cessation.
    Palmer KJ; Buckley MM; Faulds D
    Drugs; 1992 Sep; 44(3):498-529. PubMed ID: 1382940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of voltage gated transdermal drug delivery platform to impose synergistic enhancement in skin permeation using electroporation and gold nanoparticle.
    Anirudhan TS; Nair SS
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():437-446. PubMed ID: 31147014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro-in vivo correlations for nicotine transdermal delivery systems evaluated by both in vitro skin permeation (IVPT) and in vivo serum pharmacokinetics under the influence of transient heat application.
    Shin SH; Thomas S; Raney SG; Ghosh P; Hammell DC; El-Kamary SS; Chen WH; Billington MM; Hassan HE; Stinchcomb AL
    J Control Release; 2018 Jan; 270():76-88. PubMed ID: 29175139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Heat Effects on Transdermal Nicotine Delivery In Vitro and In Silico Using Heat-Enhanced Transport Model Analysis.
    La Count TD; Zhang Q; Murawsky M; Hao J; Ghosh P; Dave K; Raney SG; Talattof A; Kasting GB; Li SK
    AAPS J; 2020 Jun; 22(4):82. PubMed ID: 32488395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards mimicking natural protein channels with aligned carbon nanotube membranes for active drug delivery.
    Majumder M; Stinchcomb A; Hinds BJ
    Life Sci; 2010 Apr; 86(15-16):563-8. PubMed ID: 19383500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro comparative studies of two marketed transdermal nicotine delivery systems: Nicopatch and Nicorette.
    Olivier JC; Rabouan S; Couet W
    Int J Pharm; 2003 Feb; 252(1-2):133-40. PubMed ID: 12550788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time controlled pulsatile transdermal delivery of nicotine: A phase I feasibility trial in male smokers.
    Hammann F; Kummer O; Guercioni S; Imanidis G; Drewe J
    J Control Release; 2016 Jun; 232():248-54. PubMed ID: 27090163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strat-M® synthetic membrane: Permeability comparison to human cadaver skin.
    Haq A; Goodyear B; Ameen D; Joshi V; Michniak-Kohn B
    Int J Pharm; 2018 Aug; 547(1-2):432-437. PubMed ID: 29890259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage gated carbon nanotube membranes.
    Majumder M; Zhan X; Andrews R; Hinds BJ
    Langmuir; 2007 Jul; 23(16):8624-31. PubMed ID: 17616216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of chronopharmacokinetics in design and evaluation of transdermal drug delivery systems.
    Gries JM; Benowitz N; Verotta D
    J Pharmacol Exp Ther; 1998 May; 285(2):457-63. PubMed ID: 9580583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro study of transdermal nicotine delivery: influence of rate-controlling membranes and adhesives.
    Fang JY; Chen SS; Huang YB; Wu PC; Tsai YH
    Drug Dev Ind Pharm; 1999 Jun; 25(6):789-94. PubMed ID: 10349565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.