These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 20548344)

  • 41. Gain without inversion in hybrid quantum dot-metallic nanoparticle systems.
    Sadeghi SM
    Nanotechnology; 2010 Nov; 21(45):455401. PubMed ID: 20947944
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 2.6 W optically-pumped semiconductor disk laser operating at 1.57-microm using wafer fusion.
    Rautiainen J; Lyytikäinen J; Sirbu A; Mereuta A; Caliman A; Kapon E; Okhotnikov OG
    Opt Express; 2008 Dec; 16(26):21881-6. PubMed ID: 19104620
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High net modal gain (>100 cm(-1)) in 19-stacked InGaAs quantum dot laser diodes at 1000 nm wavelength band.
    Tanoue F; Sugawara H; Akahane K; Yamamoto N
    Opt Lett; 2013 Jul; 38(13):2333-5. PubMed ID: 23811919
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modeling of carrier dynamics in InGaAs/GaAs self-assembled quantum dot lasers.
    Kashiri M; Asgari A
    Appl Opt; 2016 Mar; 55(8):2042-8. PubMed ID: 26974800
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Vertical external cavity surface emitting PbTe/CdTe quantum dot lasers for the mid-infrared spectral region.
    Khiar A; Eibelhuber M; Volobuev V; Witzan M; Hochreiner A; Groiss H; Springholz G
    Opt Lett; 2014 Dec; 39(23):6577-80. PubMed ID: 25490625
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of potential well thickness on the carrier transport characteristics of InGaAs quantum dot laser diodes.
    Dong H; Jia Z; Jia W; Liang J; Wang Z; Xua B
    Phys Chem Chem Phys; 2022 Nov; 24(43):26708-26716. PubMed ID: 36305332
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 2-µm Tm:Lu₂O₃ ceramic disk laser intracavity-pumped by a semiconductor disk laser.
    Saarinen EJ; Vasileva E; Antipov O; Penttinen JP; Tavast M; Leinonen T; Okhotnikov OG
    Opt Express; 2013 Oct; 21(20):23844-50. PubMed ID: 24104295
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High performance wafer-fused semiconductor disk lasers emitting in the 1300 nm waveband.
    Sirbu A; Rantamäki A; Saarinen EJ; Iakovlev V; Mereuta A; Lyytikäinen J; Caliman A; Volet N; Okhotnikov OG; Kapon E
    Opt Express; 2014 Dec; 22(24):29398-403. PubMed ID: 25606874
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Single-frequency operation of a high-power, long-wavelength semiconductor disk laser.
    Lindberg H; Larsson A; Strassner M
    Opt Lett; 2005 Sep; 30(17):2260-2. PubMed ID: 16190437
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design considerations for high-power GalnP/AlGalnP unstable-resonator semiconductor lasers.
    Bao Z; Defreez RK; Carleson PD; Felisky MK; Largent C; Serreze HB
    Appl Opt; 1993 Dec; 32(36):7402-7. PubMed ID: 20861957
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Two-chip power-scalable THz-generating semiconductor disk laser.
    Guoyu H; Kriso C; Zhang F; Wichmann M; Stolz W; Fedorova KA; Rahimi-Iman A
    Opt Lett; 2019 Aug; 44(16):4000-4003. PubMed ID: 31415532
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Linear increase of the modal gain in 1.3 µm InAs/GaAs quantum dot lasers containing up to seven-stacked QD layers.
    Salhi A; Rainò G; Fortunato L; Tasco V; Martiradonna L; Todaro MT; De Giorgi M; Cingolani R; Passaseo A; Luna E; Trampert A; De Vittorio M
    Nanotechnology; 2008 Jul; 19(27):275401. PubMed ID: 21828705
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A 23-watt single-frequency vertical-external-cavity surface-emitting laser.
    Zhang F; Heinen B; Wichmann M; Möller C; Kunert B; Rahimi-Iman A; Stolz W; Koch M
    Opt Express; 2014 Jun; 22(11):12817-22. PubMed ID: 24921477
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 33 W continuous output power semiconductor disk laser emitting at 1275 nm.
    Leinonen T; Iakovlev V; Sirbu A; Kapon E; Guina M
    Opt Express; 2017 Mar; 25(6):7008-7013. PubMed ID: 28381042
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 8.5 W VECSEL output at 1270 nm with conversion efficiency of 59%.
    Keller ST; Sirbu A; Iakovlev V; Caliman A; Mereuta A; Kapon E
    Opt Express; 2015 Jun; 23(13):17437-42. PubMed ID: 26191752
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modulation response of a long-cavity, gain-levered quantum-dot semiconductor laser.
    Pochet M; Usechak NG; Schmidt J; Lester LF
    Opt Express; 2014 Jan; 22(2):1726-34. PubMed ID: 24515179
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimized performance of 905 nm semiconductor lasers by using the high strain quantum well.
    Wang J; Qi A; Xu C; Zhang W; Fu T; Zhou X; Zheng W
    Opt Express; 2023 Aug; 31(17):27927-27934. PubMed ID: 37710858
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Population inversion in a single InGaAs quantum dot using the method of adiabatic rapid passage.
    Wu Y; Piper IM; Ediger M; Brereton P; Schmidgall ER; Eastham PR; Hugues M; Hopkinson M; Phillips RT
    Phys Rev Lett; 2011 Feb; 106(6):067401. PubMed ID: 21405494
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of Coulomb scattering on the ultrafast gain recovery in InGaAs quantum dots.
    Gomis-Bresco J; Dommers S; Temnov VV; Woggon U; Laemmlin M; Bimberg D; Malic E; Richter M; Schöll E; Knorr A
    Phys Rev Lett; 2008 Dec; 101(25):256803. PubMed ID: 19113738
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Two-photon coherent control of a single quantum dot.
    Flissikowski T; Betke A; Akimov IA; Henneberger F
    Phys Rev Lett; 2004 Jun; 92(22):227401. PubMed ID: 15245258
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.