These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 20548345)

  • 1. Optimization of the splice loss between photonic-bandgap fibers and conventional single-mode fibers.
    Aghaie KZ; Digonnet MJ; Fan S
    Opt Lett; 2010 Jun; 35(12):1938-40. PubMed ID: 20548345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. More than threefold expansion of highly nonlinear photonic crystal fiber cores for low-loss fusion splicing.
    Chen Z; Xiong C; Xiao LM; Wadsworth WJ; Birks TA
    Opt Lett; 2009 Jul; 34(14):2240-2. PubMed ID: 19823561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical and experimental analysis of splicing between the photonic crystal fiber and the conventional fiber using grin fibers.
    Ouyang DQ; Guo CY; Ruan SC; Wu YM; Yang JH; Lin HQ; Wei HF
    Appl Opt; 2012 Dec; 51(36):8516-20. PubMed ID: 23262588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber.
    Wang YY; Wheeler NV; Couny F; Roberts PJ; Benabid F
    Opt Lett; 2011 Mar; 36(5):669-71. PubMed ID: 21368943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Splice loss evaluation for optical fibers with arbitrary-index profile.
    Sakai J; Kimura T
    Appl Opt; 1978 Sep; 17(17):2848-53. PubMed ID: 20203878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of strain and pressure to the effective refractive index of the fundamental mode of hollow-core photonic bandgap fibers.
    Pang M; Xuan HF; Ju J; Jin W
    Opt Express; 2010 Jun; 18(13):14041-55. PubMed ID: 20588536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-loss hollow-core silica/air photonic bandgap fibre.
    Smith CM; Venkataraman N; Gallagher MT; Müller D; West JA; Borrelli NF; Allan DC; Koch KW
    Nature; 2003 Aug; 424(6949):657-9. PubMed ID: 12904788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers.
    Kashiwagi M; Saitoh K; Takenaga K; Tanigawa S; Matsuo S; Fujimaki M
    Opt Express; 2012 Jul; 20(14):15061-70. PubMed ID: 22772202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells.
    Thapa R; Knabe K; Corwin KL; Washburn BR
    Opt Express; 2006 Oct; 14(21):9576-83. PubMed ID: 19529347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-mode delivery of 250 nm light using a large mode area photonic crystal fiber.
    Yamamoto N; Tao L; Yalin AP
    Opt Express; 2009 Sep; 17(19):16933-40. PubMed ID: 19770911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Mode ytterbium-doped Large-Mode-Area photonic bandgap rod fiber amplifier.
    Alkeskjold TT; Laurila M; Scolari L; Broeng J
    Opt Express; 2011 Apr; 19(8):7398-409. PubMed ID: 21503050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 microm.
    Lyngsø JK; Mangan BJ; Jakobsen C; Roberts PJ
    Opt Express; 2009 Dec; 17(26):23468-73. PubMed ID: 20052054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High power handling shape memory alloy optical fiber connector.
    Faucher D; Fraser A; Zivojinovic P; Godmaire XP; Weynant E; Bernier M; Vallée R
    Appl Opt; 2009 Oct; 48(30):5664-7. PubMed ID: 19844298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-mode to single-mode conversion in a 61 port Photonic Lantern.
    Noordegraaf D; Skovgaard PM; Maack MD; Bland-Hawthorn J; Haynes R; Laegsgaard J
    Opt Express; 2010 Mar; 18(5):4673-8. PubMed ID: 20389479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arc-fusion splicing of single-mode fibers. 2: A practical splice machine.
    Kato Y; Seikai S; Shibata N; Tachigami S; Toda Y; Watanabe O
    Appl Opt; 1982 Jun; 21(11):1916-21. PubMed ID: 20389971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bandwidth comparison of photonic crystal fibers and conventional single-mode fibers.
    Nielsen M; Folkenberg J; Mortensen N; Bjarklev A
    Opt Express; 2004 Feb; 12(3):430-5. PubMed ID: 19474841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultraviolet guiding hollow-core photonic crystal fiber.
    Février S; Gérôme F; Labruyère A; Beaudou B; Humbert G; Auguste JL
    Opt Lett; 2009 Oct; 34(19):2888-90. PubMed ID: 19794757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-core acetylene-filled photonic microcells made by tapering a hollow-core photonic crystal fiber.
    Wheeler NV; Grogan MD; Light PS; Couny F; Birks TA; Benabid F
    Opt Lett; 2010 Jun; 35(11):1875-7. PubMed ID: 20517447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of acoustic sensitivity of hollow-core photonic bandgap fibers.
    Yang F; Jin W; Ho HL; Wang F; Liu W; Ma L; Hu Y
    Opt Express; 2013 Jul; 21(13):15514-21. PubMed ID: 23842338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultralow-loss fusion splicing between negative curvature hollow-core fibers and conventional SMFs with a reverse-tapering method.
    Wang C; Yu R; Debord B; Gérôme F; Benabid F; Chiang KS; Xiao L
    Opt Express; 2021 Jul; 29(14):22470-22478. PubMed ID: 34266009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.