These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Double Zernike expansion of the optical aberration function from its power series expansion. Braat JJ; Janssen AJ J Opt Soc Am A Opt Image Sci Vis; 2013 Jun; 30(6):1213-22. PubMed ID: 24323109 [TBL] [Abstract][Full Text] [Related]
3. Zernike expansion of derivatives and Laplacians of the Zernike circle polynomials. Janssen AJ J Opt Soc Am A Opt Image Sci Vis; 2014 Jul; 31(7):1604-13. PubMed ID: 25121449 [TBL] [Abstract][Full Text] [Related]
4. Wave-front interpretation with Zernike polynomials. Wang JY; Silva DE Appl Opt; 1980 May; 19(9):1510-8. PubMed ID: 20221066 [TBL] [Abstract][Full Text] [Related]
5. Use of Zernike polynomials for efficient estimation of orthonormal aberration coefficients over variable noncircular pupils. Lee H Opt Lett; 2010 Jul; 35(13):2173-5. PubMed ID: 20596184 [TBL] [Abstract][Full Text] [Related]
6. Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials. Robert Iskander D; Davis BA; Collins MJ; Franklin R Ophthalmic Physiol Opt; 2007 May; 27(3):245-55. PubMed ID: 17470237 [TBL] [Abstract][Full Text] [Related]
7. Recursive formula to compute Zernike radial polynomials. Honarvar Shakibaei B; Paramesran R Opt Lett; 2013 Jul; 38(14):2487-9. PubMed ID: 23939089 [TBL] [Abstract][Full Text] [Related]
8. Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts. Mahajan VN; Aftab M Appl Opt; 2010 Nov; 49(33):6489-501. PubMed ID: 21102675 [TBL] [Abstract][Full Text] [Related]
9. On the computation of recurrence coefficients for univariate orthogonal polynomials. Liu Z; Narayan A J Sci Comput; 2021 Sep; 88(3):. PubMed ID: 34483475 [TBL] [Abstract][Full Text] [Related]
10. Least-squares fitting of orthogonal polynomials to the wave-aberration function. Rayces JL Appl Opt; 1992 May; 31(13):2223-8. PubMed ID: 20720881 [TBL] [Abstract][Full Text] [Related]
11. Optimal modeling of corneal surfaces with Zernike polynomials. Iskander DR; Collins MJ; Davis B IEEE Trans Biomed Eng; 2001 Jan; 48(1):87-95. PubMed ID: 11235595 [TBL] [Abstract][Full Text] [Related]
12. Efficient and robust recurrence relations for the Zernike circle polynomials and their derivatives in Cartesian coordinates. Andersen TB Opt Express; 2018 Jul; 26(15):18878-18896. PubMed ID: 30114148 [TBL] [Abstract][Full Text] [Related]
13. Comparison of annular wavefront interpretation with Zernike circle polynomials and annular polynomials. Hou X; Wu F; Yang L; Chen Q Appl Opt; 2006 Dec; 45(35):8893-901. PubMed ID: 17119589 [TBL] [Abstract][Full Text] [Related]
14. Accuracy of Zernike polynomials in characterizing optical aberrations and the corneal surface of the eye. Carvalho LA Invest Ophthalmol Vis Sci; 2005 Jun; 46(6):1915-26. PubMed ID: 15914604 [TBL] [Abstract][Full Text] [Related]
17. Acceleration of computation of φ-polynomials. Kaya I; Rolland J Opt Express; 2013 Nov; 21(23):29065-72. PubMed ID: 24514422 [TBL] [Abstract][Full Text] [Related]
18. Use of numerical orthogonal transformation for the Zernike analysis of lateral shearing interferograms. Dai F; Tang F; Wang X; Feng P; Sasaki O Opt Express; 2012 Jan; 20(2):1530-44. PubMed ID: 22274496 [TBL] [Abstract][Full Text] [Related]
19. Orthonormal curvature polynomials over a unit circle: basis set derived from curvatures of Zernike polynomials. Zhao C; Burge JH Opt Express; 2013 Dec; 21(25):31430-43. PubMed ID: 24514717 [TBL] [Abstract][Full Text] [Related]
20. Zernike aberration coefficients transformed to and from Fourier series coefficients for wavefront representation. Dai GM Opt Lett; 2006 Feb; 31(4):501-3. PubMed ID: 16496900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]