These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 20548624)

  • 21. Spectral reflectance of the human ocular fundus.
    Delori FC; Pflibsen KP
    Appl Opt; 1989 Mar; 28(6):1061-77. PubMed ID: 20548621
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative analysis of multi-spectral fundus images.
    Styles IB; Calcagni A; Claridge E; Orihuela-Espina F; Gibson JM
    Med Image Anal; 2006 Aug; 10(4):578-97. PubMed ID: 16861030
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrastructure and organisation of the retina and pigment epithelium in the cutlips minnow, Exoglossum maxillingua (Cyprinidae, Teleostei).
    Collin SP; Collin HB; Ali MA
    Histol Histopathol; 1996 Jan; 11(1):55-69. PubMed ID: 8720448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Choroidal neovascularization in long-standing case of Vogt-Koyanagi-Harada disease.
    Inomata H; Minei M; Taniguchi Y; Nishimura F
    Jpn J Ophthalmol; 1983; 27(1):9-26. PubMed ID: 6190031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Blood-retinal barrier dysfunction at the pigment epithelium induced by blue light.
    Putting BJ; Zweypfenning RC; Vrensen GF; Oosterhuis JA; van Best JA
    Invest Ophthalmol Vis Sci; 1992 Nov; 33(12):3385-93. PubMed ID: 1428711
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pathologic changes in the retinal pigment epithelium and Bruch's membrane of fat-fed atherogenic mice.
    Miceli MV; Newsome DA; Tate DJ; Sarphie TG
    Curr Eye Res; 2000 Jan; 20(1):8-16. PubMed ID: 10611710
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The surgical removal of a subfoveal choroidal neovascular membrane: an alternative treatment to laser photocoagulation.
    Bailey RN
    J Am Optom Assoc; 1993 Feb; 64(2):104-10. PubMed ID: 7679685
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantifying changes in RPE and choroidal vasculature in eyes with age-related macular degeneration.
    McLeod DS; Taomoto M; Otsuji T; Green WR; Sunness JS; Lutty GA
    Invest Ophthalmol Vis Sci; 2002 Jun; 43(6):1986-93. PubMed ID: 12037009
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advanced glycation end product (AGE) accumulation on Bruch's membrane: links to age-related RPE dysfunction.
    Glenn JV; Mahaffy H; Wu K; Smith G; Nagai R; Simpson DA; Boulton ME; Stitt AW
    Invest Ophthalmol Vis Sci; 2009 Jan; 50(1):441-51. PubMed ID: 18676633
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spontaneous lacquer crack lesions in the retinopathy, globe enlarged (rge) chick.
    Montiani-Ferreira F; Kiupel M; Petersen-Jones SM
    J Comp Pathol; 2004; 131(2-3):105-11. PubMed ID: 15276849
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Change of morphological and functional characteristics of retinal pigment epithelium cells during cultivation of retinal pigment epithelium-choroid perfusion tissue culture.
    Miura Y; Klettner A; Noelle B; Hasselbach H; Roider J
    Ophthalmic Res; 2010; 43(3):122-33. PubMed ID: 19887877
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mitogenesis and retinal pigment epithelial cell antigen expression in the rat after krypton laser photocoagulation.
    Zhang NL; Samadani EE; Frank RN
    Invest Ophthalmol Vis Sci; 1993 Jul; 34(8):2412-24. PubMed ID: 8325749
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-resolution imaging of the human retina in vivo after scatter photocoagulation treatment using a semiautomated laser system.
    Kriechbaum K; Bolz M; Deak GG; Prager S; Scholda C; Schmidt-Erfurth U
    Ophthalmology; 2010 Mar; 117(3):545-51. PubMed ID: 20031226
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spectral profiling of autofluorescence associated with lipofuscin, Bruch's Membrane, and sub-RPE deposits in normal and AMD eyes.
    Marmorstein AD; Marmorstein LY; Sakaguchi H; Hollyfield JG
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2435-41. PubMed ID: 12091448
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Non-invasive measurement of the concentration of melanin, xanthophyll, and hemoglobin in single fundus layers in vivo by fundus reflectometry.
    Hammer M; Schweitzer D; Thamm E; Kolb A
    Int Ophthalmol; 2001; 23(4-6):279-89. PubMed ID: 11944852
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calibrated real-time control of lesion size based on reflectance images.
    Jerath MR; Kaisig D; Grady Rylander Iii H; Welch AJ
    Appl Opt; 1993 Mar; 32(7):1200-9. PubMed ID: 20820253
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical precursors and Beer's law violations; non-exponential propagation losses in water.
    Gibson U; Osterberg U
    Opt Express; 2005 Mar; 13(6):2105-10. PubMed ID: 19495097
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New ocular fundus reflectometer.
    Riva C
    Appl Opt; 1972 Aug; 11(8):1845-9. PubMed ID: 20119242
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The applicability of Lambert-Beer's law.
    Doc Ophthalmol; 1974 Dec; 38(2):279-82. PubMed ID: 27542361
    [No Abstract]   [Full Text] [Related]  

  • 40. Quantitative reflectometry-I Principles and scope.
    Kealey D
    Talanta; 1972 Dec; 19(12):1563-71. PubMed ID: 18961217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.