BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

549 related articles for article (PubMed ID: 20548724)

  • 1. Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations.
    Sasano Y; Browell EV
    Appl Opt; 1989 May; 28(9):1670-9. PubMed ID: 20548724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurements of stratospheric aerosols with a combined elastic-Raman-backscatter lidar.
    Gross MR; McGee TJ; Singh UN; Kimvilakani P
    Appl Opt; 1995 Oct; 34(30):6915-24. PubMed ID: 21060553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tropospheric aerosol extinction coefficient profiles derived from scanning lidar measurements over Tsukuba, Japan, from 1990 to 1993.
    Sasano Y
    Appl Opt; 1996 Aug; 35(24):4941-52. PubMed ID: 21102920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrared lidar observations of stratospheric aerosols.
    Forrister HN; Roberts DW; Mercer AJ; Gimmestad GG
    Appl Opt; 2014 Jun; 53(16):D40-8. PubMed ID: 24922442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Dual-wavelength Mie lidar observations of tropospheric aerosols].
    Chi RL; Wu DC; Liu B; Zhou J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jun; 29(6):1468-72. PubMed ID: 19810510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stratospheric temperature monitoring using a vibrational Raman lidar. Part 1: aerosols and ozone interferences.
    Faduilhe D; Keckhut P; Bencherif H; Robert L; Baldy S
    J Environ Monit; 2005 Apr; 7(4):357-64. PubMed ID: 15798803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of stratospheric aerosol microphysical properties from independent extinction and backscattering measurements with a Raman lidar.
    Wandinger U; Ansmann A; Reichardt J; Deshler T
    Appl Opt; 1995 Dec; 34(36):8315-29. PubMed ID: 21068952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vertical profiles of pure dust and mixed smoke-dust plumes inferred from inversion of multiwavelength Raman/polarization lidar data and comparison to AERONET retrievals and in situ observations.
    Müller D; Veselovskii I; Kolgotin A; Tesche M; Ansmann A; Dubovik O
    Appl Opt; 2013 May; 52(14):3178-202. PubMed ID: 23669830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significance of multiple scattering from tropospheric aerosols for ground-based backscatter lidar measurements.
    Ackermann J; Völger P; Wiegner M
    Appl Opt; 1999 Aug; 38(24):5195-201. PubMed ID: 18324018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retrieval of aerosol extinction-to-backscatter ratios by combining ground-based and space-borne lidar elastic scattering measurements.
    Lu X; Jiang Y; Zhang X; Wang X; Nasti L; Spinelli N
    Opt Express; 2011 Mar; 19 Suppl 2():A72-9. PubMed ID: 21445222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity of the lidar solution to errors of the aerosol backscatter-to-extinction ratio: influence of a monotonic change in the aerosol extinction coefficient.
    Kovalev VA
    Appl Opt; 1995 Jun; 34(18):3457-62. PubMed ID: 21052160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of the lidar ratio for atmospheric aerosols with a 180 degrees backscatter nephelometer.
    Doherty SJ; Anderson TL; Charlson RJ
    Appl Opt; 1999 Mar; 38(9):1823-32. PubMed ID: 18305813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-wavelength lidar inversion algorithm for a two-component atmosphere.
    Ackermann J
    Appl Opt; 1997 Jul; 36(21):5134-43. PubMed ID: 18259326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio.
    Pappalardo G; Amodeo A; Pandolfi M; Wandinger U; Ansmann A; Bösenberg J; Matthias V; Amiridis V; De Tomasi F; Frioud M; Larlori M; Komguem L; Papayannis A; Rocadenbosch F; Wang X
    Appl Opt; 2004 Oct; 43(28):5370-85. PubMed ID: 15495429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of IR laser backscatter spectra from sulfuric acid and ammonium sulfate aerosols.
    Mudd HT; Kruger CH; Murray ER
    Appl Opt; 1982 Mar; 21(6):1146-54. PubMed ID: 20389820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle backscatter, extinction, and lidar ratio profiling with Raman lidar in south and north China.
    Tesche M; Ansmann A; Müller D; Althausen D; Engelmann R; Hu M; Zhang Y
    Appl Opt; 2007 Sep; 46(25):6302-8. PubMed ID: 17805366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orbiting lidar simulations. 2: Density, temperature, aerosol, and cloud measurements by a wavelength-combining technique.
    Russell PB; Morley BM
    Appl Opt; 1982 May; 21(9):1554-63. PubMed ID: 20389896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mediterranean aerosol typing by integrating three-wavelength lidar and sun photometer measurements.
    Perrone MR; Burlizzi P
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):14123-46. PubMed ID: 27048326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavelength dependence of backscattering and extinction of kaolin dust at CO(2) laser wavelengths: effect of multiple scattering.
    Ben-David A
    Appl Opt; 1993 Mar; 32(9):1598-605. PubMed ID: 20820292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential of lidar backscatter data to estimate solar aerosol radiative forcing.
    Wendisch M; Müller D; Mattis I; Ansmann A
    Appl Opt; 2006 Feb; 45(4):770-83. PubMed ID: 16485690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.