These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Polymorphic phospholipid phase transitions as tools to understand peptide-lipid interactions. Tournois H; de Kruijff B Chem Phys Lipids; 1991 Mar; 57(2-3):327-40. PubMed ID: 1711420 [TBL] [Abstract][Full Text] [Related]
7. Ultraslow dynamics of a complex amphiphile within the phospholipid bilayer: Effect of the lipid pre-transition. Nelson J; Diehl II; Palfreeman AF; Gibby J; Bell JD Biochim Biophys Acta Biomembr; 2017 Oct; 1859(10):2068-2075. PubMed ID: 28751091 [TBL] [Abstract][Full Text] [Related]
8. A quantitative assessment of the influence of permanent kinks on the mixing behavior of phospholipids in cholesterol-rich bilayers. Jing B; Tokutake N; McCullough DH; Regen SL J Am Chem Soc; 2004 Dec; 126(47):15344-5. PubMed ID: 15563137 [TBL] [Abstract][Full Text] [Related]
9. Calorimetric and molecular mechanics studies of the thermotropic phase behavior of membrane phospholipids. Huang C; Li S Biochim Biophys Acta; 1999 Nov; 1422(3):273-307. PubMed ID: 10548720 [TBL] [Abstract][Full Text] [Related]
10. Cholesterol/phospholipid interactions in hybrid bilayer membranes. Levy D; Briggman KA Langmuir; 2007 Jun; 23(13):7155-61. PubMed ID: 17523684 [TBL] [Abstract][Full Text] [Related]
12. A microscopic model for lipid/protein bilayers with critical mixing. Zhang Z; Sperotto MM; Zuckermann MJ; Mouritsen OG Biochim Biophys Acta; 1993 Apr; 1147(1):154-60. PubMed ID: 8466927 [TBL] [Abstract][Full Text] [Related]
13. Evidence for lipid/cholesterol ordering in model lipid membranes. Ege C; Ratajczak MK; Majewski J; Kjaer K; Lee KY Biophys J; 2006 Jul; 91(1):L01-3. PubMed ID: 16679372 [TBL] [Abstract][Full Text] [Related]
14. Roles of bilayer material properties in function and distribution of membrane proteins. McIntosh TJ; Simon SA Annu Rev Biophys Biomol Struct; 2006; 35():177-98. PubMed ID: 16689633 [TBL] [Abstract][Full Text] [Related]
15. Nanoscale dynamics of phospholipids reveals an optimal assembly mechanism of pore-forming proteins in bilayer membranes. Sarangi NK; Ayappa KG; Visweswariah SS; Basu JK Phys Chem Chem Phys; 2016 Nov; 18(43):29935-29945. PubMed ID: 27762416 [TBL] [Abstract][Full Text] [Related]
16. Cholesterol modifies water concentration and dynamics in phospholipid bilayers: a fluorescence study using Laurdan probe. Parasassi T; Di Stefano M; Loiero M; Ravagnan G; Gratton E Biophys J; 1994 Mar; 66(3 Pt 1):763-8. PubMed ID: 8011908 [TBL] [Abstract][Full Text] [Related]
17. Structure of phospholipid-cholesterol membranes: an x-ray diffraction study. Karmakar S; Raghunathan VA Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):061924. PubMed ID: 16089782 [TBL] [Abstract][Full Text] [Related]
19. Liquid-liquid immiscibility in membranes. McConnell HM; Vrljic M Annu Rev Biophys Biomol Struct; 2003; 32():469-92. PubMed ID: 12574063 [TBL] [Abstract][Full Text] [Related]
20. Assess the nature of cholesterol-lipid interactions through the chemical potential of cholesterol in phosphatidylcholine bilayers. Ali MR; Cheng KH; Huang J Proc Natl Acad Sci U S A; 2007 Mar; 104(13):5372-7. PubMed ID: 17372226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]