BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 20549489)

  • 1. Reversibly sealed multilayer microfluidic device for integrated cell perfusion and on-line chemical analysis of cultured adipocyte secretions.
    Clark AM; Sousa KM; Chisolm CN; MacDougald OA; Kennedy RT
    Anal Bioanal Chem; 2010 Aug; 397(7):2939-47. PubMed ID: 20549489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplexed microfluidic enzyme assays for simultaneous detection of lipolysis products from adipocytes.
    Dugan CE; Cawthorn WP; MacDougald OA; Kennedy RT
    Anal Bioanal Chem; 2014 Aug; 406(20):4851-9. PubMed ID: 24880873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous-flow enzyme assay on a microfluidic chip for monitoring glycerol secretion from cultured adipocytes.
    Clark AM; Sousa KM; Jennings C; MacDougald OA; Kennedy RT
    Anal Chem; 2009 Mar; 81(6):2350-6. PubMed ID: 19231843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring cell secretions on microfluidic chips using solid-phase extraction with mass spectrometry.
    Dugan CE; Grinias JP; Parlee SD; El-Azzouny M; Evans CR; Kennedy RT
    Anal Bioanal Chem; 2017 Jan; 409(1):169-178. PubMed ID: 27761614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of lipolysis products secreted by 3T3-L1 adipocytes using microfluidics.
    Dugan CE; Kennedy RT
    Methods Enzymol; 2014; 538():195-209. PubMed ID: 24529440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic Chip with Integrated Electrophoretic Immunoassay for Investigating Cell-Cell Interactions.
    Lu S; Dugan CE; Kennedy RT
    Anal Chem; 2018 Apr; 90(8):5171-5178. PubMed ID: 29578696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autocrine negative feedback regulation of lipolysis through sensing of NEFAs by FFAR4/GPR120 in WAT.
    Husted AS; Ekberg JH; Tripp E; Nissen TAD; Meijnikman S; O'Brien SL; Ulven T; Acherman Y; Bruin SC; Nieuwdorp M; Gerhart-Hines Z; Calebiro D; Dragsted LO; Schwartz TW
    Mol Metab; 2020 Dec; 42():101103. PubMed ID: 33091626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct long-term regulation of glycerol and non-esterified fatty acid release by insulin and TNF-alpha in 3T3-L1 adipocytes.
    Rosenstock M; Greenberg AS; Rudich A
    Diabetologia; 2001 Jan; 44(1):55-62. PubMed ID: 11206412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. mTORC1 inhibition via rapamycin promotes triacylglycerol lipolysis and release of free fatty acids in 3T3-L1 adipocytes.
    Soliman GA; Acosta-Jaquez HA; Fingar DC
    Lipids; 2010 Dec; 45(12):1089-100. PubMed ID: 21042876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted disruption of the adipocyte lipid-binding protein (aP2 protein) gene impairs fat cell lipolysis and increases cellular fatty acid levels.
    Coe NR; Simpson MA; Bernlohr DA
    J Lipid Res; 1999 May; 40(5):967-72. PubMed ID: 10224167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microfluidic interface for the culture and sampling of adiponectin from primary adipocytes.
    Godwin LA; Brooks JC; Hoepfner LD; Wanders D; Judd RL; Easley CJ
    Analyst; 2015 Feb; 140(4):1019-25. PubMed ID: 25423362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vitamin D decreases adipocyte lipid storage and increases NAD-SIRT1 pathway in 3T3-L1 adipocytes.
    Chang E; Kim Y
    Nutrition; 2016 Jun; 32(6):702-8. PubMed ID: 26899162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuropeptides, including neuropeptide Y and melanocortins, mediate lipolysis in murine adipocytes.
    Bradley RL; Mansfield JP; Maratos-Flier E
    Obes Res; 2005 Apr; 13(4):653-61. PubMed ID: 15897473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The vasoactive peptide adrenomedullin is secreted by adipocytes and inhibits lipolysis through NO-mediated beta-adrenergic agonist oxidation.
    Harmancey R; Senard JM; Pathak A; Desmoulin F; Claparols C; Rouet P; Smih F
    FASEB J; 2005 Jun; 19(8):1045-7. PubMed ID: 15788445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HILPDA is a lipotoxic marker in adipocytes that mediates the autocrine negative feedback regulation of triglyceride hydrolysis by fatty acids and alleviates cellular lipotoxic stress.
    Deng L; Wu SA; Qi L; Kersten S
    Mol Metab; 2023 Sep; 75():101773. PubMed ID: 37422000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxytocin stimulates lipolysis, prostaglandin E
    Assinder SJ; Boumelhem BB
    Mol Cell Endocrinol; 2021 Aug; 534():111381. PubMed ID: 34216640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Curcumin attenuates lipolysis stimulated by tumor necrosis factor-α or isoproterenol in 3T3-L1 adipocytes.
    Xie XY; Kong PR; Wu JF; Li Y; Li YX
    Phytomedicine; 2012 Dec; 20(1):3-8. PubMed ID: 23083815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of murine melanocortin receptors mediating adipocyte lipolysis and examination of signalling pathways involved.
    Møller CL; Raun K; Jacobsen ML; Pedersen TÅ; Holst B; Conde-Frieboes KW; Wulff BS
    Mol Cell Endocrinol; 2011 Jul; 341(1-2):9-17. PubMed ID: 21616121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. APPL1 knockdown blocks adipogenic differentiation and promotes adipocyte lipolysis.
    Wen Z; Tang Z; Li M; Zhang Y; Li J; Cao Y; Zhang D; Fu Y; Wang C
    Mol Cell Endocrinol; 2020 Apr; 506():110755. PubMed ID: 32045627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ethanolic extract of Artemisia scoparia inhibits lipolysis in vivo and has antilipolytic effects on murine adipocytes in vitro.
    Boudreau A; Richard AJ; Burrell JA; King WT; Dunn R; Schwarz JM; Ribnicky DM; Rood J; Salbaum JM; Stephens JM
    Am J Physiol Endocrinol Metab; 2018 Nov; 315(5):E1053-E1061. PubMed ID: 30153067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.