These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
414 related articles for article (PubMed ID: 20549490)
1. Instrumental measurement of bitter taste in red wine using an electronic tongue. Rudnitskaya A; Nieuwoudt HH; Muller N; Legin A; du Toit M; Bauer FF Anal Bioanal Chem; 2010 Aug; 397(7):3051-60. PubMed ID: 20549490 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of bitterness in white wine applying descriptive analysis, time-intensity analysis, and temporal dominance of sensations analysis. Sokolowsky M; Fischer U Anal Chim Acta; 2012 Jun; 732():46-52. PubMed ID: 22688033 [TBL] [Abstract][Full Text] [Related]
3. Towards an understanding of bitterness in white wines: Contribution of 27 compounds assessed by LC-HRMS and sensory analysis. Estier T; Marchal A Food Chem; 2024 Sep; 451():139503. PubMed ID: 38714111 [TBL] [Abstract][Full Text] [Related]
4. Towards reliable estimation of an "electronic tongue" predictive ability from PLS regression models in wine analysis. Kirsanov D; Mednova O; Vietoris V; Kilmartin PA; Legin A Talanta; 2012 Feb; 90():109-16. PubMed ID: 22340124 [TBL] [Abstract][Full Text] [Related]
5. Assessment of bitter taste of pharmaceuticals with multisensor system employing 3 way PLS regression. Rudnitskaya A; Kirsanov D; Blinova Y; Legin E; Seleznev B; Clapham D; Ives RS; Saunders KA; Legin A Anal Chim Acta; 2013 Apr; 770():45-52. PubMed ID: 23498685 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of the feasibility of the electronic tongue as a rapid analytical tool for wine age prediction and quantification of the organic acids and phenolic compounds. The case-study of Madeira wine. Rudnitskaya A; Rocha SM; Legin A; Pereira V; Marques JC Anal Chim Acta; 2010 Mar; 662(1):82-9. PubMed ID: 20152269 [TBL] [Abstract][Full Text] [Related]
7. Contribution of low molecular weight phenols to bitter taste and mouthfeel properties in red wines. Gonzalo-Diago A; Dizy M; Fernández-Zurbano P Food Chem; 2014 Jul; 154():187-98. PubMed ID: 24518332 [TBL] [Abstract][Full Text] [Related]
8. Correlation of sensory bitterness in dairy protein hydrolysates: Comparison of prediction models built using sensory, chromatographic and electronic tongue data. Newman J; Egan T; Harbourne N; O'Riordan D; Jacquier JC; O'Sullivan M Talanta; 2014 Aug; 126():46-53. PubMed ID: 24881533 [TBL] [Abstract][Full Text] [Related]
9. Preference for and sensitivity to flavanol mean degree of polymerization in model wines is correlated with body composition. Griffin LE; Diako C; Miller LE; Neilson AP; Ross CF; Stewart AC Appetite; 2020 Jan; 144():104442. PubMed ID: 31494153 [TBL] [Abstract][Full Text] [Related]
10. Sensory representation of typicality of Cabernet franc wines related to phenolic composition: impact of ripening stage and maceration time. Cadot Y; Caillé S; Samson A; Barbeau G; Cheynier V Anal Chim Acta; 2012 Jun; 732():91-9. PubMed ID: 22688039 [TBL] [Abstract][Full Text] [Related]
11. [Evaluation of taste changes of Scutellariae Radix before and after wine-frying based on electronic ongue technology and its application in identification of Scutellariae Radix pieces]. Chai CC; Cao Y; Mao M; Wang JY; Liu N; Li XX; Zhang K; Chen DL; Wei LY; Yin YH; Li F Zhongguo Zhong Yao Za Zhi; 2020 Jun; 45(11):2552-2559. PubMed ID: 32627488 [TBL] [Abstract][Full Text] [Related]
12. Feasibility study of FT-MIR spectroscopy and PLS-R for the fast determination of anthocyanins in wine. Romera-Fernández M; Berrueta LA; Garmón-Lobato S; Gallo B; Vicente F; Moreda JM Talanta; 2012 Jan; 88():303-10. PubMed ID: 22265503 [TBL] [Abstract][Full Text] [Related]
13. Comparative study of wine tannin classification using Fourier transform mid-infrared spectrometry and sensory analysis. Fernández K; Labarca X; Bordeu E; Guesalaga A; Agosin E Appl Spectrosc; 2007 Nov; 61(11):1163-7. PubMed ID: 18028694 [TBL] [Abstract][Full Text] [Related]
14. Characterization of taste-active fractions in red wine combining HPLC fractionation, sensory analysis and ultra performance liquid chromatography coupled with mass spectrometry detection. Sáenz-Navajas MP; Ferreira V; Dizy M; Fernández-Zurbano P Anal Chim Acta; 2010 Jul; 673(2):151-9. PubMed ID: 20599029 [TBL] [Abstract][Full Text] [Related]
15. Electronic tongue as a screening tool for rapid analysis of beer. Polshin E; Rudnitskaya A; Kirsanov D; Legin A; Saison D; Delvaux F; Delvaux FR; Nicolaï BM; Lammertyn J Talanta; 2010 Apr; 81(1-2):88-94. PubMed ID: 20188892 [TBL] [Abstract][Full Text] [Related]
16. Identification of Catechin, Syringic Acid, and Procyanidin B2 in Wine as Stimulants of Gastric Acid Secretion. Liszt KI; Eder R; Wendelin S; Somoza V J Agric Food Chem; 2015 Sep; 63(35):7775-83. PubMed ID: 26244870 [TBL] [Abstract][Full Text] [Related]
17. Sensory variability associated with anthocyanic and tannic fractions isolated from red wines. Ferrero-Del-Teso S; Suárez A; Jeffery DW; Ferreira V; Fernández-Zurbano P; Sáenz-Navajas MP Food Res Int; 2020 Oct; 136():109340. PubMed ID: 32846535 [TBL] [Abstract][Full Text] [Related]
18. Characterization of selected South African young cultivar wines using FTMIR spectroscopy, gas chromatography, and multivariate data analysis. Louw L; Roux K; Tredoux A; Tomic O; Naes T; Nieuwoudt HH; van Rensburg P J Agric Food Chem; 2009 Apr; 57(7):2623-32. PubMed ID: 19334750 [TBL] [Abstract][Full Text] [Related]
19. Application of an electronic tongue based on FT-MIR to emulate the gustative mouthfeel "tannin amount" in red wines. Vera L; Aceña L; Boqué R; Guasch J; Mestres M; Busto O Anal Bioanal Chem; 2010 Aug; 397(7):3043-9. PubMed ID: 20517596 [TBL] [Abstract][Full Text] [Related]