These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 20549552)

  • 61. Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron.
    Krupa M; Popović N; Kopell N; Rotstein HG
    Chaos; 2008 Mar; 18(1):015106. PubMed ID: 18377087
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Membrane resonance in bursting pacemaker neurons of an oscillatory network is correlated with network frequency.
    Tohidi V; Nadim F
    J Neurosci; 2009 May; 29(20):6427-35. PubMed ID: 19458214
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Partial inhibition of catecholamine activity and enhanced responsiveness to NMDA after sustained administration of vortioxetine.
    Ebrahimzadeh M; El Mansari M; Blier P
    Neuropharmacology; 2018 Jan; 128():425-432. PubMed ID: 29102760
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Role of hyperpolarization-activated conductances in the lateral superior olive: a modeling study.
    Szalisznyó K
    J Comput Neurosci; 2006 Apr; 20(2):137-52. PubMed ID: 16518570
    [TBL] [Abstract][Full Text] [Related]  

  • 65. NMDA-Receptor-dependent synaptic activation of voltage-dependent calcium channels in basolateral amygdala.
    Calton JL; Kang MH; Wilson WA; Moore SD
    J Neurophysiol; 2000 Feb; 83(2):685-92. PubMed ID: 10669484
    [TBL] [Abstract][Full Text] [Related]  

  • 66. GABAergic control of rat substantia nigra dopaminergic neurons: role of globus pallidus and substantia nigra pars reticulata.
    Celada P; Paladini CA; Tepper JM
    Neuroscience; 1999 Mar; 89(3):813-25. PubMed ID: 10199615
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Presynaptic inhibition preferentially reduces in NMDA receptor-mediated component of transmission in rat midbrain dopamine neurons.
    Wu YN; Shen KZ; Johnson SW
    Br J Pharmacol; 1999 Jul; 127(6):1422-30. PubMed ID: 10455292
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Serotonergic inhibition of action potential evoked calcium transients in NOS-containing mesopontine cholinergic neurons.
    Leonard CS; Rao SR; Inoue T
    J Neurophysiol; 2000 Sep; 84(3):1558-72. PubMed ID: 10980027
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Long-term enhancement of dopamine release by high frequency tetanic stimulation via a N-methyl-D-aspartate-receptor-mediated pathway in rat striatum.
    Ochi M; Inoue H; Koizumi S; Shibata S; Watanabe S
    Neuroscience; 1995 May; 66(1):29-36. PubMed ID: 7543663
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Non-NMDA receptor-mediated vibrotactile responses of neurons from the hindpaw representation in the rat SI cortex.
    Vardar B; Güçlü B
    Somatosens Mot Res; 2017 Sep; 34(3):189-203. PubMed ID: 29096588
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Kinetics and geometry of the excitatory dopaminergic transmission in the rat striatum in vivo.
    Gonon F; Bloch B
    Adv Pharmacol; 1998; 42():140-4. PubMed ID: 9327866
    [No Abstract]   [Full Text] [Related]  

  • 72. Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior.
    Zweifel LS; Parker JG; Lobb CJ; Rainwater A; Wall VZ; Fadok JP; Darvas M; Kim MJ; Mizumori SJ; Paladini CA; Phillips PE; Palmiter RD
    Proc Natl Acad Sci U S A; 2009 May; 106(18):7281-8. PubMed ID: 19342487
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Electrophysiological evidence that a subset of midbrain dopamine neurons integrate the reward signal induced by electrical stimulation of the posterior mesencephalon.
    Moisan J; Rompré PP
    Brain Res; 1998 Mar; 786(1-2):143-52. PubMed ID: 9554987
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Properties of dopaminergic neurons in organotypic mesencephalic-striatal co-cultures--evidence for a facilitatory effect of dopamine on the glutamatergic input mediated by α-1 adrenergic receptors.
    Cucchiaroni ML; Freestone PS; Berretta N; Viscomi MT; Bisicchia E; Okano H; Molinari M; Bernardi G; Lipski J; Mercuri NB; Guatteo E
    Eur J Neurosci; 2011 May; 33(9):1622-36. PubMed ID: 21453288
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Kinetics of two voltage-gated K+ conductances in substantia nigra dopaminergic neurons.
    Segev D; Korngreen A
    Brain Res; 2007 Oct; 1173():27-35. PubMed ID: 17826751
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Participation of Kv1 channels in control of membrane excitability and burst generation in mesencephalic V neurons.
    Hsiao CF; Kaur G; Vong A; Bawa H; Chandler SH
    J Neurophysiol; 2009 Mar; 101(3):1407-18. PubMed ID: 19144742
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effects of Neural Morphology and Input Distribution on Synaptic Processing by Global and Focal NMDA-Spikes.
    Poleg-Polsky A
    PLoS One; 2015; 10(10):e0140254. PubMed ID: 26460829
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The acute and chronic administration of (+/-)-8-hydroxy-2-(Di-n-propylamino)tetralin significantly alters the activity of spontaneously active midbrain dopamine neurons in rats: an in vivo electrophysiological study.
    Nakamura K; Suzuki K; McCreary AC; Ashby CR
    Synapse; 2006 May; 59(6):359-67. PubMed ID: 16463399
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Intrinsic Mechanisms of Frequency Selectivity in the Proximal Dendrites of CA1 Pyramidal Neurons.
    Combe CL; Canavier CC; Gasparini S
    J Neurosci; 2018 Sep; 38(38):8110-8127. PubMed ID: 30076213
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Increased ethanol excitation of dopaminergic neurons of the ventral tegmental area after chronic ethanol treatment.
    Brodie MS
    Alcohol Clin Exp Res; 2002 Jul; 26(7):1024-30. PubMed ID: 12170113
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.